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I. INTRODUCTION 

The importance of organophosphorus compounds in biochemistry (1-2) 

and toxicology (3-5) is well known. Knowledge of their electronic and 

stereochemical structures is essential to the under s tand ing of the roles 

they play in these fields. Since these compounds are often quite com­

plex, initial structural studies are best made on model compounds. Many 

(I-CVII) of the models to be considered herein are listed in Tables 1-5. 

Included are open-chain and five- and six-membered mono- and bi-cyclic 

compounds containing either tricoordinate, trivalent phosphorus or 

tetracoordinate, pentavalent phosphorus. Also, all of them contain at 

least two alkoxyl groups bonded to phosphorus and the rings always have 

a PO(C) 0 skeleton (n=2,3). 
I 2J 

1 31 
The purpose of the H and P mnr, infrared, and dipole moment 

studies to be described in this Thesis is to increase our knowledge of 

the following areas : 

Solution stereochemistry of the six-membered monocyclic compounds 

Number and percentages of conformational isomers (con-

formers ) 

Form (chair, boat, etc.) of these conformers 

Stereochemical preferences of the exocyclic groups 

Rate of conformer interconversion 

Dependencies of conformer percentages on the solvent, 

concentration and temperature 

Rate of phosphorus atomic inversion 
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Nature of the exocyclic bond to phosphorus in 1-substituted-l-

phospha-2,6-dioxacyclohexanes 

Solution stereochemistry of the open-chain compounds XiPCOR)^ 

Rotation of the OR groups about the PO bonds 

Dependence of the stereochemistry on X 

Variation of the CT- and ir-bonding characters of the phosphoryl 

linkage from open-chain to monocyclic to bicyclic trialkyl 

phosphates 

Relative stabilities of the adducts of open-chain, mono­

cyclic, and bicyclic trialkyl phosphites 

Cause of the doublet phosphoryl stretching band in the infra­

red spectra of the bicyclic phosphates. 
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Table 1. l-Phospha-2.,5-dioxacyclopentapes 

(R)(Y:)P 

Compound^ R Y 
^1 ^2 ^3 

I OCH^ 0 H H H H 

II OCH3 0 CH3 CH3 CH3 CH3 

III OCHg - H H H H 

IV OC2H5 - H H H H 

V - H H H H 

VI OCH3 - CH3 CH3 CH3 CH3 

VII - CH3 CH3 CH3 CH3 

VIII - CH3 CH3 CH3 CH3 

IX N(CHs)2 - CH3 CH3 CH3 CH3 

X CI - CH3 CH3 CH3 CH3 

XI A,B CI - CK H H H 

XII A,B OCH3 - CH3 H H H 

XIII A,B OC2H5 - CH3 H H H 

XIV CI - H H H H 

XV F - H H H H 

XVI - H H H H 

XVII OCOCH^ - H H H H 

XVIII OCOC6H5 - H H H H 

XIX A,B Cl - CH3 H CH3 H 

and B are geometrical isomers. Isomer A is thermodynamically 
more stable at room temperature. 
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Table 1 (continued) 

Compound^ R Y 
h ^2 ^3 

XX CI - CH^ H H CH, 

XXI A,B OCH3 0 CH, COCHg CH3 COCH, 

XXII OCH3 0 CH3 COCH COCH CH3 

XXIII A,B OCR. 0 H C H CH COCH: 
3 2 5 3 3 

Table 2. Trivalent l-phospha-2,6-dioxacyclohexanes 

«3 

Compound^ R 
^2 ^3 "4 S 

XXIV H H H H CH CH 

XXV OCCCH^)^ H H H H CH3 CHs 

XXVI A,B % H CH H H H H 

XXVII A,B 0CH3 H CH3 H H H H 

XXVIII A,B 0CH3 H H H H CH H 

XXIX OCH 
3 

H H H H CH3 CH3 

and B are geometrical isomers, 
more stable at room temperature. 

Isomer A is thermodynamically 
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Table 2 (continued) 

a 
Cmnpound R 

4 ^2 S ^6 

XXK A,B OCH^ H H H H 0(053)3 H 

XXXI A,B OCH^ H H H H CH^Cl CH3 

XXXII A,B OCH^ H CH3 CH H H H 

XXXIII OCH3 CH3 H CH3 H H H 

XXXIV OCH3 H H H H H H 

XXXV N(CHg)2 H H H H CH3 CH3 

XXXVI F H H H H CH3 CH 

XXXVII A,B F H H H H CHgCl CH3 

XXXVIII Cl H H H H CH3 CH 

XXXIX A,B Cl H H H H CH^Cl CH3 

H XL A Cl H H H H OCCB,), 

CH3 

H 

XLI A Cl H CH3 CH^ H H H 

XLII Cl CH3 H CH3 H H H 

XLIII A Cl H CH3 H H H H 

XLIV ' Br H H H H CH3 CH 

XLV A,B Br H H H H CH Cl CH3 

XLVI H H H H CH3 CH3 

XL VII H H H H CH3 CH3 
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Table 3. Pentavalent l-phospha-2,6-dioxacyclohexanes 

Compound R Y 

XLVIII CH3 0 H 

XLK Br 0 CH3 CH^Br 

L % 0 H H 

LI OH 0 CH3 CH3 

LU N(CH3)2 s CH3 CH3 

LUI NHCn-CaH^) 0 CH3 CH3 

LIV m(n-C^H^^) 0 CH3 CH3 

LV NH(t-C^Hg) 0 CH3 CH3 

LVI 0 CH3 CH3 

LVII On-CaH^ G CH3 CH3 

LVIII 0 CH3 CH3 

LK 0 CH3 CH3 

IX OCH3 0 CH3 CH3 

LXI OC2H3 G CH3 CH3 

LXII oi-CaH? G CH3 CH3 

LXIII Qa-CôH^CHs 0 CH3 CH3 

LXIV O-SiS-CCEgigCgHg 0 CH3 

LXV O-Z.e-CCHaYgHg 0 CH3 CH3 

LXVI 0-2,6- (t-C^Hg >2-4- (CH3 0 CH3 CH3 

LXVII C H CH 0 (=2=5 CH Cl 

LXVIII 0 CHgCl % 
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Table 3 (continued) 

Compound R 

LXIX 

LXX 

LXXI 

LXXII 

LXXIII 

LXXIV 

LXXV 

LXXVI 

LXXVII a,b 

LXXVIII 

LXXIX 

LXXX 

LXXXI 

CI 

CI 

*25*10 

M5%10 

*S*10 

NC5H10 

CI 

OCH3 

OCH3 

OCH^ 

OCHg 

R, 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

CBgCl 

CH^Cl 

C2H5 

CH^Cl 

CH. 

CHgCl 

CH„ 

CH. 

H 

CH^Cl 

CH^Cl 

CHgCl 

<2*5 

CHgCl 

CH. 

CHgCl 

CH. 

H 

BH3 CH. CH. 

BH. CHgCl CH. 

BH. CH. CH^Cl 
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Table 4. Additional pentavalent l-phospha-2.6-<iioxacvclohexanes 

Compound R Y 
^1 ^2 "3 S 

LXXXII 0 H CH3 H H H H 

LXXXIII «=6=5 0 CH3 H H H H H 

LXXXIV (^6=5 0 CH3 CH3 H CH3 H H 

LXXXV OCgEg 0 CH3 CH3 CH3 H H H 

LXXXVI «=6=5 0 H H H CH(CH3)2 CH3 CH3 

LXXXVII 0 H H CH(CH3)2 H CH3 CH3 

LXXXVIII ^^6=5 0 H H CH^Cl H H H 

LXXXIX Br 0 H H CH^Br H H H 

XC OCH3 BH3 CH3 H H CH3 H H 

XCI OCH3 BH3 H CH3 CH3 H H H 
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Table 5» Bicyclic and open-chain derivatives 

Compound 

XCII 

XCIII 

XCIV 

XCV 

XCVI 

BH3 

[-M(P03C5Hg)^](CX0^)2 

0--/% 

Compound Y 

XCVII(R) 

XCVIII(R) 

XCIX(R) • - 0 

C(R) (-Ag[P(0CH2)gCR]^}(ClO^) 
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Table 5 (continued) 

CHjO'^l^OCHg 
O 
CH, 

\ 
CI - cm civ cv - cvii 

Compound 

CI 

en 

cm 

CIV 

cv 

CVI 

CVII 

BH, 

BH. 
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II. REVIEW OF LITERATURE 

The goal of this chapter is to present the more important results 

and conclusions of other investigators pertinent to the study of the 

areas mentioned in the Introduction. The methods used to synthesize 

most of the compounds studied have been described in recent reviews 

(2,6) and books (7a,7b,8). The two volumes by Sasse (7a, 7b) provide a cŒiplâE 

coverage of the synthetic literature of organophosphorus compounds 

through 1961 and 1962, respectively. The book by Gefter contains useful 

tables of structural formulas, physical data and literature references 

of monocyclic compounds (8, pp. 112-122). The hydrolysis of phosphate 

esters, especially monocyclic esters, has received considerable attention 

because of its biological importance and this area has been reviewed by 

Westheimer (9). Some of the stereochemical aspects to be discussed be­

low have been reviewed very recently (10, pp. 22, 44-6, 51-5, 70, 71, 

79, 80, 83, 84). 

The stereochemistry of the five-membered monocyclic derivatives has 

been studied primarily by x-ray diffraction and nmr methods. The solid 

state molecular structures of the phosphates I (11) and II (12) are 

puckered and have equivalent bond distances except for the ring C-C and 

C-0 distances which are longer in the tetramethyl derivative. The 

puckering is greater in II, presumably due to steric crowding of the 

four methyl groups bonded to the ring carbon atoms. More significantly, 

the methoxyl methyl group is centered between the ring oxygen atoms in 

I but is over the phosphoryl oxygen in II, representing a methoxyl 

rotation of approximately 180°. Newton, et al. (12) expected the methyl 
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groups to cause some shifting of the position of this group but were 

surprised at its magnitude. They explained the presence of just these 

two extreme positions in terms of favorable p-d TT-bonding of the 

methoxyl oxygen to phosphorus rather than in terms of hydrogen bonding 

of the methoxyl methyl to one or more of the other three oxygen atoms. 

Also, the fact that the symmetry of the oxygen n-orbitals in these 

cyclic molecules permits one less TT-bond (giving a more positive 

phosphorus) than in open-chain esters was used to partially account for 

the relatively-great rate of hydrolysis of the former. 

The influence of intermolecular interactions on stereochemistry 

is difficult to determine and the assumption of similar stereochemistry 

in the solid and in solution is thus not necessarily justified. nmr 

spectroscopy has recently begun to yield some useful information on 

solution stereochemistries. Foster and Fyfe (13) concluded from such 

studies that the trivalent phosphorus atoms in III-V have a tetragonal 

arrangement of groups about them and do not invert rapidly on the nmr 

time scale. The methylene nmr resonances of the pure compounds, 

shown at high resolution but not analyzed, are complex multiplets rather 

than the doublets expected if the groups about phosphorus were planar 

or averaged to a planar configuration due to rapid phosphorus atomic 

inversion. Goldwhite and Fontal (14,15) arrived at the same conclusion 

for VI-X. Additional evidence for slow phosphorus inversion was the 

constancy of the chemical shifts (14) of the two peaks, rather than one, 

observed for the four methyl groups for VI-VIII over at least a 100°C 

temperature range. Although the chemical shift of the low-field peak 

for the dime thy lamino derivative (IX) was solvent dependent and co­
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incided with that of the other peak in dilute benzene or toluene, a 

variable temperature study confirmed slow phosphorus inversion for this 

compound also up to at least 151°C. The chloro compound (X) is unique 

because the spectrum is a singlet for the neat liquid at room temperature 

but broadens and finally splits into two peaks if the temperature is 

lowered or if the liquid is diluted with an inert solvent. The latter 

observation and the dependence of the coalescence temperature and the 

chemical shift difference on concentration in aromatic solvents indicated 

that thermal inversion of phosphorus, a concentration independent process, 

was not the only cause of the single peak at higher temperatures. A 

likely process was thougjht to be a bimolecular chloro exchange involving 

an inversion at phosphorus. Goldwhite also obtained the spectra of 

XI A,B and XII A,B (14). The two methyl resonances that were found for 

each were attributed to two geometrical isomers in ratios of 1.65:1 and 

1.55:1, respectively. Aksnes, Ericksen and Mellingen (16) added 

XI A,B and XIII A,B to a solution of sulfur in carbon disulfide and 

found approximately equal amounts of thiophosphate isomers in the latter 

case by partial gas chromatographic separation. These workers assumed 

that the ratio of isomeric phosphites was the same as that of the 

thiophosphates. 

Gagnaire and coworkers (17) analyzed the nmr spectra of six 

l-R-l-phospha-2,5-dioxacyclopentanes (III, XIV-XVIII) and the three 

isomers of l-chloro-l-phospha-3,4-dimethyl-2,5-dioxacyclopentane (XIX 

A,B and XX). The two POCH coupling constants for the first six deriva­

tives were found to be about +1.5 and +9.5 Hz, i.e., essentially inde­

pendent of the exocyclic group R. Two cyclic isomers (XIX A and B) 
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were spectrally detected in the product of the action of meso-2,3-

butanediol on phosphorus trichloride. The symmetry of the spectrum 

indicated a plane of symmetry for each isomer, but J(POCH) was 2Hz 

for the major isomer and 9Hz for the minor isomer. Also, a reversible 

isomer ratio change took place with changing temperature, it being 

12:1 at 30° and 7:1 at 120°C. The isomerization, attributed to either 

intra- or inter-molecular phosphorus inversion, was slow relative to 

the nmr time scale but too fast for isolation of either of the isomers. 

The chlorine atom was tentatively concluded to be antl to the methyl 

groups in the major isomer and syn in the minor one on the basis of 

the greater size of the chlorine atom compared to the phosphorus lone 

electron pair and the deshielding effect of the chlorine on protons in 

its vicinity. The chloro compound (XX) derived from racemic 2,3-

butanediol is unique among those studied because it lacks a plane of 

symmetry. A cyclic deformation resulting from this lack of symmetry 

was postulated to account for the rather different set of POCH coupling 

constants of 4.2 and 0 Hz. In order to account for the coupling 

constants of the other compounds, these authors proposed that the spatial 

disposition of the phosphorus lone pair of electrons plays a role in the 

coupling, possibly through an overlap of the nonbonding lobe of the 

orbital of the CH fragment and the lone-pair orbital. 

More recently, Haake and coworkers (18) analyzed the spectra of 

III (benzene), XIV (benzene) and XVI (cyclohexane) and in each case 

postulated two equivalent twist-envelope forms, one of which is approx­

imately shown below. The coupling constants agree with those found by 
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Gagnaire, et al. (17) for the neat compounds within 0.6 Hz. The twist 

was determined by finding one set of constants and k^ that would per-

X 

mit the vicinal H- H coupling constants for these compounds and 

2 
ethylene sulfite from the equations J . = k_ cos 0 and = % 

^ CIS 1 trans 
2 2 

[kg COB (120 +0) + k^ cos (120 - 0)], wherein 0 is the dihedral angle 

between the two ring CCD planes; the best correlation involved the 

omission of the data for XIV. The angle 0 was thus found to be 32° 

for III and 27° for XVI. The envelope nature of the rings, rather than 

the orientation of the phosphorus lone pair (17), was postulated to 

account for the large difference between the POCH coupling constants 

for each compound. The chloro compound XIV is superficially like X 

(15) because the spectrum of neat XIV was a singlet at room temperature 

which broadened and split into two peaks as the temperature was lowered. 

Dilution with an inert solvent produced a complex spectrum corresponding 

to the doublet for X. In contrast, Gagnaire, et al. (17) observed a 

complex spectrum for the neat XIV. Moreover, the observance of a sing­

let is puzzling because analysis of the complex spectrum (17) revealed 

POCH coupling constants of +1.6 and +9.8 Hz. 
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Less is known about the solution stereochemistry of tetraco-

ordinate phosphorus five-membered monocycles. Ramirez and coworkers 

showed (19, 20) that the compound obtained by slow crystallization 

from ether of the cyclic product(s) of reaction of CVIII with one 

mole equivalent of water was one of the two possible meso-phosphates 

(XXI A,B). Moreover, it underwent a slow stereomutation at phosphorus 

in solution, probably catalyzed by traces of methanol. The ratio of 

meso isomers became nearly equal upon aging of the solution as shown by 

COCH3 CH3 COCH3 

C V I M  C I X  C X  

the relative intensities of the separate nmr resonances for the two. 

The racemic oxyphosphorane CIX hydrolyzed to give the one possible 

racemic phosphate XXII. These workers have also examined the and 

31 
P nmr and infrared spectra of other cyclic phosphate hydrolysis 

products of oxyphosphoranes (20). As an example, CX gave a mixture of 

the two isomeric XXIII A,B. The infrared spectra were very similar but 

31 
among the differences in the nmr spectra were the P chemical shifts 

31 
and P coupling constants to the ring protons which were -13.95 ppm 

and 4.4 Hz for one and -15.21 ppm and 14 Hz for the other. The isomer 

with the smaller coupling constant was tentatively assigned a puckered 
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ring structure with the acetyl group cis to the phosphoryl oxygen. The 

the other, giving a smaller coupling constant, and the assumed de-

shielding effect of the phosphoryl bond would give rise to the observed 

relative chemical shifts of each of the H, CH^, and COCH^ types of 

protons in the two isomers. 

No solid state structure has been reported for a trivalent phos­

phorus l-R-l-phospha-2,6-dioxacyclohexane, probably because most are 

liquids at room temperature. Knowledge of the solution stereochemistry 

of these compounds has lagged behind that of the superficially similar 

1,3-dioxacyclohexanes (21, 22) and 1-oxo-l-thia-2,6-dioxacyclohexanes 

(23). Denney and Denney reported chemical and nmr data suggesting 

the existence of several pairs of geometrical isomers for six-membered 

ring phosphites early in 1966 (24). The two methods used to prepare these 

methoxyl derivatives are outlined in Equations 1 and 2. The phosphite 

XXVIII, prepared as in Equation 1, showed two doublet resonances for the 

POCH dihedral angle would be closer to 90° in this cis isomer than in 

P(OAlk)g + HO^\/^H<->(AlkO)(:) P^ + 2AlkOH (1) 

PClg + HO OH—»(C1)(:) P + 2HC1 

(2 )  

(Cl)(:) P 
0 

+ a. NaQAlk 
> (AlkO)(;) 

b. AlkOH + N(CgH^)^ 
+ a. NaCl 

b. (C^H^)^ NHCl 
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methyl group (R^) that had chemical shifts very similar to those of the 

methyl (R^, Rg) resonances for XXIX; the ratio of the areas of the peaks 

for XXVIII A and B was 4:1 in carbon tetrachloride. The phosphite XXVII, 

prepared similarly, showed just one methyl (Rg) resonance. However, 

preparation as in Equation 2a yielded various ratios of two cyclic 

products (XXVII A,B) as indicated by the various ratios of the previous­

ly-found methyl (R^) resonance to a new one. Treatment of one of these 

mixtures with a trace of methanol caused the new resonance to disappear. 

In an analogous manner, one methyl (R^, R^) resonance was found for 

XXXII and two for XXXIII when prepared as in Equation 1. However, prep­

aration of a mixture of XXXII and XXXIII as in Equation 2a resulted in 

a spectrum with just one additional methyl resonance. Treatment of this 

mixture with a trace of methanol resulted in the loss of the new 

resonance and a compensating gain in the relative area of that due to 

XXXII A. Efforts to separate XXVIII A and B, XXVII A and B, or XXXII A 

and B by gas-liquid-partition chromatography were unsuccessful. However, 

oxidation yielded mixtures of the corresponding phosphates that could 

thus be separated. These pairs were thought to be geometrical isomers 

rather than non-interconverting conformers. On the one hand, trans­

es ter if icat ion (Equation 1) was considered to have given an equilibrium 

mixture of isomers. On the other hand, the action of sodium methoxide 

on the chloro derivatives (Equation 2a), apparently having the same pre­

ferred configuration as the phosphites, involved an inversion of con­

figuration at phosphorus. The fact that the isomer ratios via Equation 

2a were always less than the inverse of those via Equation 1 was 

attributed to isomerization of the less-thermodynamically stable isomer 
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(B) under the reaction conditions of Equation 1. 

Aksnes, Eriksen and Mellingen carried out a similar investiga­

tion of XXVI A,B and arrived at analogous conclusions (16). Nearly 

pure unstable isomer XXVI B was obtained via Equation 2b because the 

weaker nucleophile ethanol was used in place of sodium ethoxide. Also, 

XXVI B isomerized rapidly in the presence of traces of acid. The ratios 

of chloro (XLIII) and ethoxy (XXVI) isomers were determined by gas 

cliromatographic analysis of the corresponding thiophosphates as discussed 

previously for the five-membered analogs. In this manner the chloro 

compound (XLIII) was deduced to be configurâtionally pure. The assump­

tion that it has the same configuration as the stable phosphite XXVI A 

then led to the hypothesis that the second step of Equation 2b proceeds 

with inversion at phosphorus. 

Characterization of the conformation(s) of the l-phospha-2,6-

dioxacyclohexanes XXX A,B and XL A has recently been accomplished by 

Hargis and Bentrude (25). One isomer of XL and a 1:9 ratio of XXX A:B 

were prepared by Equation 2b in contrast to the 9:1 ratio of XXX A:B 

prepared by Equation 1. Ccnnparison of the vicinal HCCH coupling con­

stants for XXX A and XL A with those for the corresponding 1,3-

dioxacyclohexanes (21) indicated that the t^butyl group is equatorial 

in both. Furthermore, the differences in magnitudes of the POCH coupling 

constants, 11.28 and 5.24 Hz for XL A and 10.98 and 2.89 Hz for XXX A, 

are more indicative of the quite different 180° and 60° POCH dihedral 

angles of a chair conformer than the approximately-equal angles of a 

boat. The analogous coupling constants for XXX B differ considerably 

from those for XXX A and varied with the solvent and temperature. The 
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preferred interpretation of the data involves an equilibrium of 

rapidly interconverting chair conformers in which the major conformer 

possesses an axial ̂ -butyl group. Even more recently, Bentrude and 

Hargis have presented evidence for the axial disposition of the methoxyl 

group at phosphorus in XXX A and B (26). Reaction of methyl iodide with 

mixtures of various ratios of the phosphites XXX A and B was found to 

be highly stereoselective. An x-ray crystal structure study (27) of the 

product (XLVIII) formed from XXX B showed the six-membered rings to be 

in the chair conformation with the ̂ -butyl and methyl groups cis to 

each other and equatorially and axially oriented, respectively. If the 

reaction proceeded as shown in Equation 3 (28, pp. 37-45), the methoxyl 

group must be trans to the ^-butyl group in XXX B and therefore pre­

dominantly axial because the ̂ -butyl group was shown (25) to be pre­

dominantly axial. Consequently, the methoxyl group in XXX A must be 

axial also because XXX A and B are geometrical isomers and the ̂ -butyl 

group in XXX A was found to be equatorial (25). 

PCH, 

f= 7̂'  ̂
CCH3)3 

OCH-

X X X B  
-CH^ 

(3) 

XLVI I I ^"3 
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Gagnaire, Robert and Verrier (29, 30) determined the nmr spectral 

temperature variation and parameters for a series of 4,4-dimethyl deriva­

tives (XXIV, XXIX, XXXVI, XXXVIII, XXXV, and XLVI). The temperature 

independence of the coupling constants and chemical shifts for the first 

four between -40°C and +155°C plus the existence of different resonances 

for axial and equatorial methyl groups (R^, Rg) and ring methylene pro­

tons (R^-R^) led them to conclude that one conformer is present for each 

compound and that it is rigid at the frequencies of observation of the 

nmr. Comparison of the results of the spectral analysis with those for 

other cyclic compounds indicated a chair form for the single conformer 

with an equatorial exocyclic group R (vide infra) at phosphorus. 

Albrand, Gagnaire, Robert and Haemers have arrived at the same 

stereochemical conclusions for XXXII A and XLI A from nmr spectral 

analysis (31). In this instance, the important data were the vicinal 

HCCH and four-bond POCCH couplings. The methyl (Rg, R^) and R^ groups 

were concluded to be equatorial in a fixed chair conformer. The dis­

position of the exocyclic group R in these and the previously-studied 

compounds (29, 30) was determined by comparing the values of the cyclic 

J(POCCH) and J(POCH), respectively, with those for XCII shown below in 

a manner emphasizing the presence of a six-membered ring in a chair 

conformation. It should be noted that the pseudo-exocyclic oxygen in 

XCII is axial relative to the six-membered ring. The differences of 

the magnitudes of J(POCH'eq) = 6 Hz (XCII) versus 10.8 Hz (XXIX, 30), 

J(POCCH^q) = 0.5 Hz (XCII) versus 3.6 Hz (XXXII A) and J(POCCH^) = 

0 Hz (XCII) versus 0.5 Hz (XXXII A) implied to these authors that the 



www.manaraa.com

21b 

eq 
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H ax 
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methoxyl group in XXIX (30) and XXXII A could not be axial and must 

therefore be equatorial. In other words, as found earlier for the five-

membered analogs (17), there exists a great influence of the stereo­

chemical disposition of the phosphorus lone pair on phosphorus-hydrogen 

coupling constants. The non-methoxyl derivatives were also concluded 

to have an equatorial group R because each was concluded to be conforma-

tionally pure and the POCH and POCCH coupling constants were similar to 

those for the respective methoxy compounds in most instances. 

Stereochemical investigations of pentavalent phosphorus six-

membered heterocycles of the 1-phospha-2,6-dioxacyclohexane type are more 

numerous than those of the preceding cyclic compounds. Notably, almost 

all of the confounds contain the phosphoryl (P=0) linkage. Reports of 

solid state structural determinations of XLVIII-LI stand in contrast to 

the absence of any such studies of the five- and six-membered trivalent 

phosphorus derivatives. In all four molecules the phosphoryl oxygen 

was found to be pseudo-equatorial in a distorted chair conformer. The 

available limited information for XLVIII (27) has previously been pre­

sented in this section. In XLIX the bromine atom and bromomethyl group 

surprisingly are axial (32). However, flattening at the phosphorus 

end of the ring was reported for XLIX and L (33) and the bond angles and 

distances reported for LI (34) indicate that this molecule is probably 

similar. In XLIX, for example, the normal to a least-squares plane 

through Og, Og, and makes an angle of 36.7° with the normal to the 

plane defined by P^ and 0^ in contrast to the angle of 52.3° with 

the normal to the plane defined by C^, and C^. As a consequence of 

these flattenings, the steric interactions of the pseudo-axial group at 
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phosphorus with the axial hydrogens at and are reduced. 

1 31 
The H and some of the P nmr spectra of twenty-eight 4,4-

disubstituted-l-phospha-2,6-dioxacyclohexanes and five bicyclic 

pyrophosphates have been described by Bart le, Edmundson and Jones (35). 

In the first twenty-eight: R = alkyl, alkoxyl, aryloxyl, alkylamino, 

halo, or H; Y=0 or S; = Rg= CH^ or C^H^; R^ = CH^, Rg = CICH^. For 

several compounds, the resonance due to the methylene protons at and 

was analyzed according to an ABX and/or AMX spin-system approximation, 

where X is phosphorus. Also, the spectral features in several instances 

were shown to be consistent with a chair conformation. In a subsequent 

paper (36), Edmundson and Mitchell examined two nmr spectral features 

of fifteen compounds (some of the twenty-eight compounds and several ad­

ditional 4,4-dimethyl substituted derivatives) in more detail. The first 

feature was the measurable difference in the widths of the two methyl 

resonances. Decoupling experiments on one of the compounds, LII, showed 

that the protons of one of the methyl groups couple strongly to one of 

the pairs of methylene protons. Noting that enhanced HCCCH couplings 

have been reported for protons linked by a planar zig-zag arrangement 

of bonds, these authors attributed the narrow and broad methyl resonances 

to equatorial and axial methyl groups, respectively. The second feature 

was the relative positions of the two methyl resonances in the spectra of 

the compounds possessing an aralkyl group at phosphorus in comparison with 

the relative positions for the other compounds. Two lines of reasoning, concerned 

with the "sterlc acceptability of aralkyl groups" and the dependence of the 

position of the methyl resonances in deuteriochloroform on the axial-
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equatorial position of the aralkyl groups, led to the conclusion that 

the aralkyl groups are equatorial at phosphorus. The effect of benzene 

compared to deuteriochloroform as a solvent on the absolute and rela­

tive chemical shifts of the methyl resonances was also described. 

Kainosho and coworkers have presented nmr (37), infrared (38), 

and dipole moment (39) evidence for a solution equilibrium between two 

chair conformers for LIII-LXVI (38, 39) in which the preferred conforma­

tion possesses an equatorial phosphoryl oxygen. The nmr method was 

used to establish the chair-like structure of the rings, but the 

pertinent paper (37) is not yet available. The dipole moments of 

LIII-LIX were measured and compared to moments calculated for the 

possible chair conformers with the amino, alkoxyl or phenoxyl groups in 

several rotameric positions in order to establish the preferred con-

former. The observed values for LVI-LIX were clearly in agreement 

with an equatorial phosphoryl oxygen, but those for LIII-LV were near 

the middle of the range of calculated values so that additional evidence 

was required. The similarity of the phosphorus to ring-methylene pro­

ton couplings for LIII-LV and LVI strongly indicated that the phosphoryl 

oxygens in LIII-LV were equatorial also. The infrared spectra of the 

phosphates IX-LKVI were examined in potassium bromide and carbon tet­

rachloride in order to determine if the phosphoryl stretching fre­

quency was conformâtionally dependent. Only one band could be attributed 

to this vibration in the former medium, but the addition of phenol to 

each of the carbon tetrachloride solutions caused two bands to shift to 

lower frequencies, possibly due to hydrogen bonding to the phosphoryl 

oxygen. The higher frequency band was attributed to stretching of an 
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equatorial phosphoryl linkage because It was of much greater intensity 

than the lower frequency band for LX-LXIV and the dipole moment evi­

dence for the phosphates LVII-LIX indicated the preferred conformers 

possessed an equatorial phosphoryl oxygen (39). The intensity ratios 

of the high to low frequency bands for IXV and LXVI were about 2:1 and 

1:1, in agreement with the nmr results (37) and the expected greater 

proportion of the conformer with an equatorial ortho-substituted phenoxy 

group at phosphorus. 

Many geometrically-isomeric derivatives have been reported but 

their stereochemical characterization has been limited at best. The 

synthesis and separation of isomeric phosphates by Denney and Denney 

(24) and of isomeric thiophosphates by Aksnes, et^ (16) have been 

mentioned previously. However, the stereochemical nature of these 

derivatives was not deduced. Hall and Malcolm (40) separated isomeric 

l-phenoxy-l-oxo-l-phospha-2,6-dioxacyclohexanes, e.g., LXXXII-LXXXIII 

and LXXXIV-LXXXV, by thin layer or column chromatography and examined 

1 31 1 
their H and P nmr spectra. Although the H spectra of two isomers 

31 
were 'Virtually identical," the P resonances were separated by about 

31 
1 ppm. Majorai, Munoz and Navech (41) used infrared and P nmr methods 

31 
to study the structures of LIX and LXXXII-LXXXVII. Two P resonances 

were found for each of the isomer pairs but only LXXXVI and LXXXVII 

could be separated by fractional crystallization. Infrared bands 

attributable to the phenyl ring were doubled for LIX, LXXXII-LXXXIII and 

LXXXIV-LXXXV but single for the separated LXXXVI and LXXXVII. Also, 

only one phosphoryl stretching band was found for LIX, LXXXII-LXXXIII 

-1 
and LXXXIV-LXXXV but those for LXXXVI and LXXXVII were 17 cm apart. 
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These observations and the known solid state structure of L (33) led 

to two conclusions. On the one hand, the isomers UDJXVI and LXXXVII 

most likely have the equatorial isopropyl group in chair conformations, 

but one has an axial and the other an equatorial phenoxy group at 

phosphorus. On the other hand, LIX, LXXXII-LXXXIII and LXXXIV-LXXXV 

have rings for which the possibility of inversion causes the phenoxy 

group to be sometimes axial and sometimes equatorial. 

The known stereospecificity of a reaction leading to geometrical 

isomers can be used to deduce the configuration of the products or, 

conversely, the configuration(s) of the product isomer(s) can be used 

to deduce the stereochemical course of the reaction. One of the earlier 

such investigations was reported by Wadsworth and Emmons in 1962 (42). 

T h e  a c t i o n  o f  b e n z y l  c h l o r i d e  o n  t h e  b i c y c l i c  p h o s p h i t e  P ( O C H ^ ) ,  

XCVII (CgHg), at elevated temperatures gave one of two possible mono­

cyclic isomeric phosphonates as determined by vapor-phase-chromatography. 

The benzyl and ethyl groups were concluded to be cis because of the 

bridged structure of XCVII (C^H^) and the mechanism of the Arbuzov re­

action (28, pp. 37-45) as shown in Equation 4. However, when the re-

P—CH^Hg 
C I  H g Ç  t  O  

H5C2^ O CH^ 

(4) 

LXVI  I  



www.manaraa.com

27 

actions in Equation 5 were used to prepare the phosphonate, two isomers, 

IXVII and LXVIII, resulted and could be separated by column chroma­

tography. Furthermore, the identical phosphoryl stretching frequency. 

aH,c 

+ PCOCH^)^ - V 
H5C2 CH20H 

CH^I 

 ̂ :̂XOCH3)SË:̂ :̂  (5) 

1 >—O 
C2H5 % 

LXVI I  and  LXV I11  

v(P=0) = 1260 cm for the two indicated the isomers differed only by 

the configuration of the ethyl and chloromethyl groups at C^. In support 

of this conclusion, only one LXIX was obtained, which had v(P=0) = 

1260 cm , regardless of the preparative route. In contrast to the 

stereospecificity of the reaction of XCVII (C^H^) with benzyl chloride, 

reaction with chlorine and bromine gave both cis- and trans-1-halo-1-0x0-

4-ethyl-4-halomethyl-l-phospha-2,6-dioxacyclohexanes, e.g., LXX and LXXI. 

On the other hand, Bertrand (43) isolated only one isomer XLIX from the 

reaction in benzene of bromine with XCVII (CH^). Wadsworth (44) has 

used the stereospecificity of the Arbuzov reaction of chlorine and 

N-chlor op iper id ine with XCVII (C^H^) to elucidate the mechanism of 

substitution of chlorine at phosphorus in LXXX by piperidine, as shown 

in Equations 6 and 7. Different isomeric phosphoroamidates, LXXII and 

LXXIII, were obtained by each route even though this author earlier re­

ported chlorination of XCVII (C^H^) to be nonstereospecific. Since the 

chlorine atom and piperidino group were known to be cis to the ethyl 

group in LXX and LXXII, respectively, the action of piperidine on LXX 
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XCVI KCgHg) 

XCVI KCHg) 

C \ r  

o • 
LXX 

C5H10NH 

v., O î 

(6) 

CI 

LXX I  I I  

LXXV 

--Qr. 

XCVI KCgHg) 

XCVI KCHg) 

C^IONCI 
o 

\̂ll 

fT NCgH^o 

(7) 

LXXI  I  

LXX IV  

must have involved an inversion of configuration at phosphorus. The 

possibility that LXXII and IXXIII are conformera rather than geometrical 

isomers was ruled out by the observations that heating them separately 

to 200°C produced no change in their physical properties and that an 

identical compound CXI was prepared from LXX and LXVII by reactions in­

volving predominately inversion and retention, respectively. Edmundson 

and Mitchell (45) have studied three methods of preparation of LXXIV and 

LXXV and their nmr spectra in order to establish the configurations 

and conformations present. Two of the preparative methods are shown in 

CHgCI 

1 Na^ 

C2H5 

CXI  
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Equations 6 and 7 and the third in Equation 8. Equations 6 and 7 gave 

CIH2C^ /CH^H ^ ^ CghyN 

u c  N:H20H ^NCgHio 

CHgCI 

^ PCONCgH^O (8) 

O 

CH3 

LXXIV  and  LXXV 

single, different isomers, LXXV and LXXIV, respectively, but Equation 8 

gave a mixture of the two. The ring methylene proton resonances of 

LXXV, LXXIV and the phosphorochloridate in Equation 6, LXXVI, were not 

described but "appeared to be compatible with a chair conformation." 

Two arguments were employed to establish the dominant dispositions of the 

exocyclic groups at C^. First of all, for pairs of geometrical isomers 

of cyclic aralkyl phosphonates of the 4-halomethy1-4-methy1 series, 

for the trans-phosphorvl oxygen-halomethyl isomer and 

Là < AÔ for the cis-compound, where 65 = 6(CDC1,) - 6(C^H,) for 

the methyl and chloromethyl groups. However, the A6 value was shown 

to be associated with the configuration at C^, not that at phosphorus. 

The values of AÔ for IXXIV-LXXVI and the assumption that the chloro­

methyl group in LXXVI is axial in solution as is the bromomethyl group 

in the solid state of XLIX allowed the configuration at in LXXIV and 

LXXV to be deduced. Secondly, C^-methyl groups giving broad and narrow 

resonances in 4,4-diinethyl derivatives have been assigned to axial and 

equatorial positions, respectively (36). Comparison of the widths of 

the methyl resonances in LXXIV and LXXV also allowed the C^-configuration 
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to be determined. In each case, the structures shown below were pro­

posed. The phosphoryl osgrgen must then be axial in LXXIV because of the 

O 

mode of preparation (Equation 7). The authors were not certain of the 

configuration at phosphorus in LXXV but the stability of LXXIV and 

phosphite in Equation 7 indicated that LXXIV and LXXV were not.conformers 

and that, "in all probability," LXXV also possessed an axial phosphoryl 

oxygen. 

The importance of distinguishing between geometrical and con­

formational isomers has been made clear by the preparation of the two 

conf ormers of LXXVII, for which geometrical isomers are not possible 

(45). Preparation as in Equation 9 yielded a product (LXXVII a) in­

soluble in boiling light petroleum, whereas preparation as in Equation 10 

initially gave more than 95% of a different product (LXXVII b) that 

^P(O)NC5HI0 

LXXV LXX IV  

LXXV at 200° and the lack of formation of any LXXV from the bicyclic 

+ CgĤ HCl (9) P + HNC5H10 

LXXV I I  a  
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ce, M 
( V + CINCgHK, —^ V > 

N o 
CH, CH3 

+ CH3CI (10) 

NC5H10 

3 

LXXVI I  b  

yielded LXXVII a upon repeated crystallization from light petroleum. 

The conversion of LXXVII b to LXXVII a was accompanied by the loss of 

two of the four methyl resonances in the nmr spectrum and by 

virtually no change in the infrared spectrum. These facts and the 

relative simplicity of the rmrr spectrum of the unstable compound 

LXXVII led to the conclusion that LXXVII A and B are chair conforma­

tional isomers, as shown below. The disposition of the exocyclic 

groups àt phosphorus in either isomer could not be determined. 

H3C 

CH3 " 

Two other bicyclic phosphites, XCII and CIV, have been used in 

stereochemical studies of the sort discussed above. Berlin, e£ al. 

(46, 47) found that the Arbuzov reaction of three aralkyl chlorides with 

XCII gave just one product in each case. Assuming the mechanism shown 

in Equation 11 they then analyzed the nmr and infrared spectra and 

compared the observed dipole moment with moments calculated for two of 
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the possible confonners and proposed a structure with the phosphorus 

atom in a boat ring and the other six-membered ring in a chair conforma-

P+ ,1 M 

D - Ô - U (11) 

tion. The hydrolysis of this same bicyclic phosphite, on the other hand, 

gave two products, CXII and CXIII (48). The stereochemical predictions 

shown were based on nmr and infrared evidence. The P-H proton was 

.A A 
lO OH IP OH 

CXI I  CX I I I  

placed opposing and colinear to a methylene proton in CXIII because the 

observed long-range HPOCCH coupling had been earlier reasoned (49) to 

require this geometry. The OH group was placed in an axial position in 

both isomers because no large vicinal coupling attributable to a trans 

arrangement of the methine proton on the OH-bearing carbon and a methy­

lene proton was found. The configurations at phosphorus were thought 

to differ in the two isomers because Av(P=0) was 33 cm The predic­

tion for CXII was later confirmed by x-ray diffraction analysis (50). 

The second bicyclic phosphite CIV was recently prepared by Edmundson and 

Mitchell (51). Reaction with benzyl chloride gave a single product that 

was formulated as the six-membered ring LXXXVIII on the basis of the 



www.manaraa.com

33 

evidence: known tendency of five-nenibered phosphite rings to open when 

treated with benzyl chloride (52, 53) as opposed to ring-retention with 

corresponding six-membered phosphite rings (54), stability of the 

product under aqueous conditions, the product's ^ nmr spectrum, and 

the accepted mechanism of the Arbuzov reaction. Reaction of CIV with 

bromine gave the analogous LXXXIX, characterized as the N-cyclohexyl-

phosphoramidate of unstated configuration, and hydrolysis of CIV was 

believed to have given a six-membered cyclic product. 

Bicyclic molecules containing phosphorus at one of the bridgehead 

positions are model confounds because only one conformation is usually 

possible. Only those having the PO^ group in an otherwise all-carbon 

skeleton will be considered. Examples of the bicyclo [2.2.l] heptane(5^, 

bicyclo 02.2.2] octane (56), bicyclo L3.2.1] octane (51) and adamantane 

(57a) systems are known. No structural determination of a derivative of 

the first or third types has been reported. Solid state structures of 

P(0C5g)3CCH^[XCVII(CH^)] complexed to silver as {Âg[P(0CH2)^CCH^]J(ClO^ 

(57b) and to oxygen as 0P(0CH2)^CCHg (58), and the structures of the ada-

mantane-phosphite, PO^C^H^ (XCII), complexed to sulfur as SPO^C^Hg (59) 

and to nickel as [Ni(PO^CgHg)^] (ClO^)^ (57b) are known. The bicyclo 

[3.2.1] system can exist in more than one conformation and the structure 

shown in Table 5 for CIV was proposed after a consideration of hydrogen-

hydrogen interactions (51) in the possible conformations. 

Determination of the stereochemistry of open-chain derivatives con­

taining one or more alkoxyl or aroxyl groups is more difficult than of 

cyclic derivatives because of the increased freedom of rotation of the 
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groups bonded to phosphorus. An electron diffraction study of trivinyl 

and triethyl phosphites revealed rotational isomers in the vapor state 

(60). The predominant isomer in each case has symmetry with a 

trans-configuration of the PO and CC bonds in each OR group as well as 

of each CO bond and the bisector of the opposite OPO angle. In one 

other pertinent structural study, the dihedral angles between the 0=P-0 

and the three POC planes in triphenyl phosphate in the solid state (61) 

were calculated to be 93°, 154° and 172° (12). 

Stereochemical information about the open-chain compounds has been 

deduced from nmr, dipole moment, infrared and parachor studies. Siddall 

1 
and "hrohaska (62) examined the H nmr spectra of 61 esters of aryl-

phosphoric, arylphosphonic, arylphosphinic and phenylphosphonous acids 

and found that some of the resonances for many of the esters were 

doubled. Only one structural hypothesis was found which could satis­

factorily explain the presence or absence of the doubling and its 

temperature behavior. It was concluded that rotation about the P-O-C 

linkages is rapid on the nmr time scale but not all rotamers are 

equally probable. The conformations in which the R group of a POR group 

is near rather than away from the phosphoryl oxygen or phosphorus lone 

electron pair, as shown below, are of some importance because this 

oxygen or the lone pair was generally the smallest of the groups bonded 

(O) 

(O) 

"up" or "folded" form 
R 

"down" or "extended" form 
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to phosphorus in the compounds investigated. Furthermore, there is in 

many of the compounds a s ter ically-favored isomer of rotation about the 

OC bond. For example in [(CH2)2CH0]2 P(0)CgHg the methyl resonance is 

doubled because one methyl group is near and the other is far from the 

phenyl group in the favored conformation of the isopropoxyl group in the 

"up" position as shown below. More recently. Jardine, Gray and Reesor 

(63) observed peak doubling in the spectra of CXIV-CXVII. The hypothesis 

of Siddall and Prohaska could not explain all the peak doublings or the 

CXIV  CXV CXVI  CXVI I  

O o ^ Ç) ^ O 

H3C-C-CH3 H3C-Ç-H H3C-Ç—H H3C-Ç-H 

A H3C-Ç-CH3 H3C-C-CH3 H3C—Ç-CH3 

CH3 CHg CH3 

coalescence of the doubled resonances of CXIV-CXVI at higher temperatures. 

Instead, the two resonances were attributed to slowly interconverting 

"up" and "down" positions of the isopropyl or pinacolyl groups relative 

to the phosphoryl oxygen. Complexation of CXIV-CXVI with uranyl ni­

trate eliminated the doubling because it froze the alkoxyl groups in the 

"down" position. In another related study Frankel, Klapper and 
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Cargioli (64) studied the solvent and temperature dependence of the 

nmr spectra of compounds of the type P(0)CH^ 

(OCH^COCgH^-^-Y) where Y was H, CI, CH^, NO^ and OCH^. The methylene 

protons were magnetically nonequivalent in solvents of low dielectric 

constant and the temperature dependence of the spectra could be fitted 

with a two-conformer model. The activation energy obtained was 

comparable to the temperature dependence of the dielectric constant of 

the medium. Similarly, Finegold (65) found that CH^P(S)(0CH2CHg)2 had 

31 
two sets of nonequivalent methylenic protons by analysis of the P 

and nmr spectra; the "critical" nmr parameters were invariant from 

27-227°C. Instead of postulating preferred ethoxy orientations, he 

based his explanation on unequal P-O(R) bond orders. Thus, there is "a 

resonance stabilization of the molecule in which the anti-bonding 

electrons of only one of the oxygen atoms contribute to canonical 

structures involving a conjugated P=S bond" (65, p. 2642). Lastly, 

Tsuboi and coworkers (66) have used the dihedral angle dependence of 

POCH coupling constants to conclude that the C-R bond in RCH^OP systems 

has a greater chance of taking the trans position with respect to the 

OP bond around the CO bond than the chance of taking the gauche position. 

The stereochemical implications of dipole moments of open-chain, 

organophosphorus compounds were considered as long ago as 1940. Lewis 

and Snyth (67) vectorially summed the bond moments in triphenyl phos­

phite assuming free rotation about the PO bonds and obtained good agree­

ment with the observed value. They noted that certain conformations 

should be sterically impossible but concluded that a sufficiently-wide 

variety of conformers did exist to approximate a random distribution. 
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Svirbely and Lander (68) also found the free rotation model satisfac­

tory for calculating the moment of triethyl phosphate. In contrast, 

Kosolapoff (69) compared the observed moments, from Onsager's equation, 

of several dialkyl alkylphosphonates with moments calculated by a 

vector summation method for the "up" or "folded" and "down" or "ex­

tended" conformers and concluded that the "extended" form is predominant. 

Aroney, et (70) used O^P and 0^p=0 group moments, calculated from 

the observed moments of the bicyclic molecules XCVII (CH^) and XCIX 

,a CO bond moment, and the observed moments of several open-chain 

compounds of the type P(OR)^ and OP(OR)g to calculate the "effective" 

angle 0 of the OC bond with respect to the phosphoryl bond. For ex­

ample, 0 for the tri-n-alkyl phosphates was found to be 83° and such 

that the methyl groups are on the side of the plane of the three non-

phosphoryl oxygen atoms nearer the phosphoryl oxygen. Furthermore, the 

molecules could exist in a mixture of conformations as well as in one 

"effective" conformation. Ketelaar, Gersmann and Hartog (71) calculated 

the angle between the phosphoryl link moment and a POR group moment from 

the observed molecular moments of compounds of several series of the 

type (ROXgPO, (R0)2(R^0)P0, (R0)(R^0)2P0 and (R^0)2P0 and found a value 

of 86-88°. They did not interpret this angle in terms of the conforma­

tion's) of the molecules. 

The most striking and informative feature of the infrared spectra 

of compounds containing the phosphoryl linkage is the intense phosphoryl 

stretching band. This band often appears as a doublet and the possible 

causes have been reviewed several times (72, 73, 74, p. 201; and 10, 

p. 54). In some cases splittings of up to 50 cm ^ have been found and 
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attributed either to the phosphoryl stretching mode and another 

vibrational mode or to Fermi resonance of the ̂ 0 and an overtone band. 

In other cases rotational isomerism or intermolecular dipole-dipole 

interaction between two phosphoryl bonds has been proposed. Trimethyl 

phosphate has been extensively studied (75-77) and provides an example 

of rotational isomerism. One of the more theoretical investigations of 

rotational isomerism was made by Mayants, Popov and Kabachnik (76). They 

first calculated v(P=0) for several rotamers of trimethyl phosphate 

keeping the force fields equal. The observed difference in v(P=0) of 

15 cm could not be accounted for in this manner. As a consequence, a 

difference of about two percent in the P=0 force constants of the rota­

mers was postulated, possibly due to the presence of a very weak intra­

molecular interaction between the phosphoryl oxygen and a hydrogen of 

the methyl groups in one rotamer. 

Values of parachor are dependent upon stereochemistry. A "folded" 

conformation for trialkyl phosphates was found by two groups of workers 

(78, 79) to give good agreement between calculated and experimental 

values.of the parachors. Also, whereas the three alkyl chains are 

parallel after the 3 carbon atom in trialkyl phosphates and thiophos-

phates, probably only two are parallel in trialkyl phosphites (80). 

Several attempts have been made to correlate spectral properties 

of organophosphorus compounds with the presence or absence of the 

phosphorus atom in a ring, the ring size and the number of rings. Jones 

31 
and Katritzky (81) measured P chemical shifts of acyclic five-

membered and six-membered cyclic phosphorochloridites, phosphites and 

phosphates and found "no simple relation" between the shift and the 
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ring size. Blackburn, Cohen and Todd (82) determined the F chemical 

shifts of a greater number of five- and six-membered cyclic phosphites 

and phosphates. The order for phosphites was acyclic (-138 + 2 ppm) < 

five-membered (-135.2 +2.0) < six-membered (-127.4 +3.4) and that for 

phosphates was five-membered (-15.4+2.0) < six-membered (8.13 + 1.1) 

< acyclic (10.5 + 1.5). The values for the two bicyclic phosphites, 

XCVIII (CHg) and XCII, were quite disparate from the mean but the cor­

responding phosphates, XCIX (CH^) and XCIV were normal. The order for 

the phosphates was used to explain the greater reactivity of five-

membered esters compared to the others because a greater negative chem­

ical shift indicates less electron-shielding of the phosphorus nucleus 

and a greater electrophilicity of the atom. Mark (83) has accounted 

31 
for P chemical shifts of trialkyl phosphites of various structural 

types in terms of the OPO angles. A decrease in the angle was thought 

to result in greater shielding of the phosphorus nucleus, and an increase 

to result in deshielding. In the area of infrared spectroscopy, Jones 

and Katritzky (81) found that values of v(F=0) for the five- and six-

membered cyclic phosphates were very similar and 25-30 cm ^ higher than 

that of the similar acyclic phosphate. Thus, they concluded there is 

no correlation with hydrolysis rates. In contrast, Ketelaar and. 

Gersmann (84) found that a decrease in free energy of activation of 

hydrolysis of six open-chain phosphates paralleled an increase in 

v(P=0). The increase in v(P=0) from similar open-chain to monocyclic 

phosphates has been noted by others (73, 85, 86). The paper by Edmund-

son (86) contains infrared data for 47 tri- and penta-valent 1-phospha-

2,6-dioxacyclohexanes. That by Thomas and Chittenden is a review of 
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v(P=0) for all types of organophosphorus compounds. A further increase 

in v(P=0) from mono- to bi-cyclic phosphates has also been reported 

(58). 

One means of studying the nature of the phosphoryl linkage and 

the factors influencing it has been the determination of the basicity 

of the oxygen atom. This subject has recently been briefly reviewed 

by Bellany (74, pp. 209-10). Four conclusions, based primarily on 

the work of Gramstad, et al., deserve emphasis. First of all, the 

difference between the stretching frequency of the OH bond for free and 

associated hydrogen of several alcohols, Av(OH), is a simple linear 

function of AH, AF and AS, a separate line being required for 

each alcohol. Secondly, the change in the phosphoryl stretching fre­

quency upon association with alcohols or iodine is not a reliable guide 

to the strength of association. Thirdly, there is a general trend 

whereby the higher v(P=0) correspond to the less basic oxygens as 

measured by Av(OH). Lastly, v(P=0) is not wholly determined by simple 

inductive effects. More recent articles dealing with association of 

the phosphoryl oxygen with bis-£-chlorophenylphosphoric acid (87), 

uranyl nitrate (88), phenol (89-91) and chloroform (92,93) are indica­

tive of the activity in this field. The article by Aksnes and Albrikt-

sen (89) is particularly pertinent. The phenol Av(OH) values for 15 

compounds, including a five-and six-membered cyclic phosphate and six 

other cyclic compounds, gave a poorer fit to a straight line than for 

previously-studied compounds when plotted against log K and essentially 

no fit when plotted against AH and AS. 
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Several pertinent articles and a Ph.D. thesis have come to the 

attention of the author since the completion of this Review of Litera­

ture. Bogat-skii, et al. (94) investigated the possibility of the ex­

istence of geometrical isomers in 1-chloro-, 1-methoxy- and l-ethoxy-4-

methyl-4-0f-methoxyethyl-l-phospha-2,6-dioxacyclohexanes using nmr 

spectra. An analysis of the integrated intensities of the methyl proton 

resonances revealed isomer ratios of 43:57, 40:60 and 28:72, respectively. 

The form of the ring-methylene proton resonances indicated that the 1-

chloro derivative possesses an axial P-Cl bond in a chair conformation 

but that the 1-alkoxy derivatives possess an equatorial P-OAlk bond. 

They hypothesized that the isomer with the exocyclic substituent at 

phosphorus and the 4-methyl anti was the major one in each case. The 

arguments for the above conclusions were brief and vague. Bodkin and 

Simpson (95) have determined that the more stable geometrical isomer 

of the phosphite XXVI assumes a chair conformation with an equatorial 

methyl and an axial ethoxyl group. The less stable isomer XXVI B 

adopts a rap idly-flipping chair conformation at room temperature, but 

possesses a predominantly-equatorial methyl group at -30° in CDCl^. 

The thiophosphates derived from XXVI A and B by addition of sulfur and 

the 1-chloro derivative XLIII A also possess an equatorial methyl group. 

The methyl group disposition was determined from an analysis of the 

nmr spectra. The ethoxyl disposition at phosphorus in XXVI A and B 

was determined by measuring the dipole moments of the thiophosphates, 

comparing the moments to those calculated from bond and group moments 

from the literature for the possible chair isomers and assuming that 

thiophosphate formation proceeds with retention of configuration at phos­
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phorus. The above compounds were originally studied by Aksnes, et al. 

(16), who did not establish their stereochemistry. Bentrude, et al. 

(96) have employed the geometrically-isomeric phosphites XXX A and B to 

establish that transfer of oxygen from jt-butoxyl radicals and sulfur 

from n-butylthiyl radicals is essentially stereospecific. Ccmparison of 

the results of the free-radical oxidations with those of oxidation with 

_t-butyl hydroperoxide and sulfur (Sg), assumed to proceed with retention 

of configuration at phosphorus, led to the conclusion that the former 

reactions also proceed with retention. 

Edmundson (97) has concluded that the ring of both isomers of 1-oxo-

1,4-dime thy1-4-br omomethy1-1-phospha-2,6-dioxacyclohexane is conforma-

tionally mobile in CDCl2(-55 to +30°) and (CD2)2CO(-70° to 30°) from the 

temperature dependence of the nmr spectra. In contrast, the ring 

appeared to be rigid in cis-and trans-l-benzyl-4-chloromethy1-4-methy1-

1-oxo-l-phospha-2,6-dioxacyclohexane (-30 to +30°, CDCl^), the correspond­

ing compounds with a tosyl group in place of chlorine (-30 to +30°, 

CDCl^) and cis- and trans-l-methoxv-4-methvl-4-nitro-l-phospha-2..6-

dioxacyclohexane (-50 to +30°, neat). Bentrude and Hargis (98) have 

analyzed the nmr spectra of CDCl^ solutions of the compounds^ x/ Xl', 

XXI', XXII ' and the thiophosphate analogs of X^and XIThe 4-;t-butyl 

group was concluded to be equatorial in a chair conformation in all of 

these compounds. However, the magnitudes and variation with temperature 

of the ring POCH coupling constants of XXI' suggested that there was also 

some type of boat form in equilibrium with the chair. The spectrum of 

the thiophosphate analog of XI ̂ showed no temperature dependence. The 

^The structures of conroounds designated by primed Roman numerals 
are given in Table 14, p. 166. 
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magnitudes of the ring POCH coupling constants indicated a ring geometry 

distortion. 

The ntnr- spec trim (lOOMHz) of a carbon tetrachloride solution of 

the bicyclic phosphite CV has been analyzed by Robert (99a, pp. 52-7). 

The results will be presented later along with those found independently 

by the author. 
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III. EXPERIMENTAL 

Â. Materials 

All solvents and other materials not mentioned below were reagent 

grade or better and solvents used in connection with trivalent phosphorus 

compounds were stored over Linde 3 A Molecular Sieves. Instances of 

additional purification are noted. Benzene thiol and pentaerythritol 

were purchased from J. T. Baker Chemical Company ("Baker Grade"); tri-

methyl phosphite from Aldrich Chemical Corporation, Inc., (97-100%) or 

Eastman Organic Chemicals (Practical Grade); 2,2-dimethyl-l,3-

propanediol (97-100%) and trimethylphosphate (97-100%) from Aldrich 

Chemical Corporation, Inc.; nitrogen dioxide from The Matheson Company; 

and diborane from Callery Chemical Company. Phenyl phosphorus dichloride 

was a sample supplied by Stauffer Chemical Company. Equilibrium and 

nonequilibrium mixtures of XXXI A and B, from which borane adducts were 

prepared, were synthesized by McEwen (99b). Samples of X', XI', XXI 

XXII' and the thiophosphate-analog of XI' were loaned by Bentrude (99c) 

for the purpose of obtaining their dipole moments. The following 

compounds, whose nmr and/or infrared f^ectra were recorded, were 

prepared by McEwen (99b): XXXI A and B, XXXVI, XXXVII A and B, XXXIX A 

and B, KLIV, XLV A and B, III' (Table 14), XIII', XIX', XX', XXIII% 

XXIV% XXV% XXVI % XXVIII % XXIX ' and XXXBertrand (99d) prepared l', 

II', iv', V% XVIII% XXXI% XXXII^ and XXXIII^ and Mathison (99e) pre­

pared XXXIV\ 
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B. Nuclear Magnetic Resonance Spectra 

All spectra were obtained on samples in spinning 5 sn (od) pre­

cision glass tubes. Coupling constants (J) are always given in cycles 

31 
per second (Hz). The P data were obtained by Bertrand (99d). Spectra 

were obtained at 24.3 MHz on samples at 27.5° with a Varian HR 60 

31 
Spectrometer operating at 14,100 gauss. The P chemical shifts were 

31 1 
obtained either directly from the P spectra or from the H spectra 

(Varian HR 60) by the ODOR method and are listed in parts per million 

(ppm) relative to the chemical shift of 85% phosphoric acid contained 

in a concentric capillary in the nmr tube. A positive shift is taken 

to occur at an applied magnetic field greater than that of the standard. 

Spectra for which ^^P-^H or ^H-^H decoupling experiments are reported 

were obtained on samples at 27.5° at 60 MHz by Bertrand (99d) with a 

Varian HR 60 spectrometer operating at 14,100 gauss. All other ^H 

spectra were obtained by McEwen (99b), Bertrand (99d) or the author 

with a Varian A 60 spectrometer operating at 14,100 gauss or by Cherry 

(99f) with a Varian HA 100 spectrometer operating at 23,500 gauss on 

samples at 40° and 30°, respectively, unless specified otherwise. All 

^H line positions (6) are given in ppm relative to internal tetramethyl-

silane (TMS) unless stated otherwise. A positive shift is taken to occur 

at an applied magnetic field smaller than that of the standard. ^ nmr 

spectra were obtained on samples in the absence of a solvent (neat) un­

less stated otherwise. 
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C. Infrared Spectra 

Spectra were obtained in the 800-4000 cm ^ range with a Beckman 

Model 12 spectrophotometer. The instrument was calibrated by comparing 

the observed and known band positions in the spectrum of polystyrene 

versus air. The frequency scale was 25 or 100 cm ̂ /inch from 800-

-1 -1. -1 
2000 cm and 50 or 200 cm /inch from 2000-4000 cm . The scanning 

speed was 80 cm ^/minute or less. Mulls on sodimn chloride plates or 

solutions in demountable cells (Barnes Engineering Company) with sodium 

chloride windows and, usually, 0.1 mm spacers were used in the 800-4000 

cm ^ range. Solution spectra were obtained in the double beam mode 

with solvent in the reference beam unless otherwise indicated. The 

phenol used to determine phenol shifts was dried by distillation of 

either the phenol at atmospheric pressure under a nitrogen atmosphere 

or a water/carbon tetrachloride azeotrope from a carbon tetrachloride 

solution of phenol. Benzene, bromobenzene, and mesitylene were distilled 

from sodium; pyridine from barium oxide; and acetonitrils from phosphorus 

pentoxide. 

D. Dipole Moments 

The heterodyne-beat apparatus and procedure for obtaining dipole 

moments have been described elsewhere (100a). Benzene, dried with sodium 

or LiAlH^, was always employed as the solvent. The indices of refraction 

were measured with an "Abbe-56" Re frac tome ter (Bausch and Lomb Optical 

Company) while the temperature was controlled to +0.2°C with an E. H. 

Sargent and Company thermostatic, external circulating water bath (cata­
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log No. S-84880). Solutions of water-sensitive compounds were prepared 

in a nitrogen-filled dry box. The moments of III', XIX% XX', XXIIl', 

XXIVXXVXXIX ' and XXX ' were obtained by McEwen (99b); that of 

XXXII' by Bertrand (99d) and that of LXXII (CCl^) by Moore (100b). 

E. Preparation of Compounds 

All reactions in which CV and its derivatives and compounds contain­

ing a P-Cl bond were involved as well as the accompanying isolation and 

purification steps were carried out under a nitrogen atmosphere. Special 

care was taken to exclude moisture from nonequilibrium mixtures of geo­

metrical isomers. The main criteria of purity of the compounds were the 

following: constancy of distillation temperature or melting point, 

proper integration of nmr resonances and/or absence of unaccountable 

Twr resonances. The nmr spectra of monocyclic trivalent phosphorus 

derivatives containing the methoxyl group almost always contain a doublet 

at slightly-lower field than the main methoxyl doublet. Distillation 

in several instances with a 16" platinum spinning band column (Nester/ 

Faust Manufacturing Corporation) did not eliminate the impurity. Tri-

methyl phosphite, arising from rearrangement during distillation, is a 

likely contaminant and would account for no more than 37. of the distillate. 

A tertiary base such as pyridine or triethylamine was used in many of the 

preparations as a hydrogen chloride acceptor; pyridine is not recommended 

because its hydrochloride is relatively difficult to separate frran the 

desired product by distillation. Ratios of geometrical isomers were de­

termined by comparing the areas of nonoverlapping nmr resonances with 

the aid of a Varian A-60 integrator or planimeter. nmr spectral 
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descriptions are included in this section if they have not appeared in 

the literature or are not presented later. Infrared data and dipole 

moments of many of the compounds are presented later. 

1. Meso- and d,l-2,4-pentanediol 

Both ça. 1:1 mixtures of the diastereomeric alcohols and pure meso-

2,4-pentanediol were prepared according to a slight modification of the 

procedure described by Pritchard and Vollmer (101). The isomeric cyclic 

sulfites were separated with a 16" platinum spinning band column in 

conjunction with a vacuum regulator (Nester/Faust Manufacturing Corpora­

tion); one distillation with reflux ratios no lower than 15:1 gave 96% 

meso-sulfite along with 4% d.l-sulfite and distillation of this mixture 

reduced the latter isomer to less than 1%. The thionyl chloride was 

freshly purified by a procedure described by Friedman and Wetter (102). 

2. l-Chloro-4,4-dimethvl-l-phospha-2.6-dioxacyclohexane (XKXVIII) 

This compound was obtained following a procedure outlined by 

Edmundson (103). To a well-stirred, ice-cooled ether solution of 44 ml. 

of phosphorus trichloride (0.50 mole) were added dropwise 49 g. of 2,2-

dimethyl-l,3-propanediol (0.47 mole) and 75.7 ml. of pyridine (0.94 

mole). The pyridine hydrochloride was removed by filtration and washed 

with ether. The ether was distilled from the combined filtrates at 

atmospheric pressure and XXXVIII was obtained by distillation (b^g" 70°, 

lit. bj^3 = 66° (103)). 

3. l-Chloro-cis-3,5-dimethyl and l-chloro-trans_-3,5-dimethyl-l-phospha-

2,6-dioxacyclohexanes (XLI and XLII, respectively) 
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These compounds have been reported but their preparation has not 

been fully described (24). The procedure described for XXXVIII was used 

to prepare XLI (b^^ = 72-3°, 35-40% yield) as well as ça. 1:1 mixtures 

of XLI and XLII (b^^ = 77-9°) from meso-2,4-pentanediol and ça. 1:1 

mixtures of meso- and d,1-2,4-pentanediol, respectively. In one in­

stance the preparation of XLI was modified in that triethylamine instead 

of pyridine was used as a base. The tïïïït spectrum of XLI consists 

of a C^C^-methyl doublet (6 = 1.24, J = 6.2), C^-methylene multiplet 

(6 = 1.59-1.96) and -methine multiplet (6 = 4.41-5.03). The re­

sonances for XLII are broad at room temperature and are discussed later. 

In one of the three preparations of a mixture of XLI and XLII the re­

action mixture was worked up after about two days instead of a few hours 

or less, and distillation gave small quantities of two higher-boiling 

fractions but no XLI or XLII. The nmr spectrum of each fraction 

showed a 4:1 ratio of CCH to OCH protons but neither fraction was 

further characterized. 

4. Cyclic phosphites prepared by transesterification 

A modification of the general transesterification procedure described 

by Wadsworth and Emmons (42) was used to prepare the following compounds. 

Equimolar quantities of trimethyl phosphite and the appropriate diol, 

triol or tetraol were heated at about 100° until methanol began to reflux. 

The methanol was removed by distillation at atmospheric pressure at oil-

bath temperatures up to 130° and the desired product was obtained by re­

duced pressure distillation or sublimation. The yields were usually 

greater than 50%. 
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a. l-Methoxv-l-phospha-2,5-dioxacvclopentape (III) Distilla­

tion under a pressure of 30 mn took place at 56-8° (lit. = 60-2° 

(104), bgg = 55-6° (105)). A higher-boiling fraction, b^^ = 80°, 

solidified in the receiver. Recrystallization of this colorless solid 

from carbon tetrachloride was accompanied by formation of a yellow oil 

and exposure to the atmosphere resulted in rapid formation of a color­

less liquid. The ̂  nmr spectrum of the solid (C^Hg) consists of a 

complex multiplet (ô = 2.9-3.6) featuring intense lines at 6 = 3.00, 

3.04, 3.22 and 3.24. This compound was not further characterized. 

b. 1-M.ethoxy-l-phospha-2,6-dioxacyclohexane (XXXIV) Distilla­

tion under a pressure of 38 mm took place at 76-8° (lit. b^g = 65-6° 

(106), b^^ = 50-1° (106)). The nmr spectrum taken neat consisted of 

a -methylene triplet of multiplets (6 = 4.14-4.65) and multiplet 

(6 = 3.29-3.91); a methoxyl doublet (6 = 3.48, J(POCH) = 11.7) 

and C^-methylene multiplets (5 = 1.93-2.72 and 1.30-1.73). 

c. l-ilethoxy-4,4-dimethyl-l-phospha-2.,6-dioxacyclohexane (XXIX) 

Distillation under a pressure of 36 mn took place at 87-8° (lit. b^g = 

66° (86)). 

d. l-Methoxv-cis-3.5-dimethvl-and 1-methoxy-trans-3,5-dimethyl-

l-phospha-2.6-dioxacyclohexanes (XXXII A and XXXIII, respectively) 

Preparation of these compounds by transesterification has been reported 

(24) but not in detail. The phosphite XXXII A (b^^ = 58-9°) and a 

ça. 1:1 mixture of XXXII A and XXXIII (bg = 58°, b^g = 75-7°) were 

prepared from meso-2,4-pentanediol and a ça. 1:1 mixture of meso- and 

d.1-2.4-pentanediol. respectively. 
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e. 3.9-Diinethoxv-2,4,8,lQ-tetraoxa-3,9-diphospha-spiro [S.Sl unde-

cane - (CH^O) P(OCH_% C(CH,0). P(OCH^) (CXVIII) Transes ter if ica-

tion of trimethyl phosphite with pentaerythritol is slower than with 

other alcohols possibly because pentaerythritol is not appreciablly 

soluble in trimethyl phosphite even at 110°. The product (CXVIII) was 

sublimed twice at ça. 90° at < 1 mm (m = 124-7°, lit. m = 124-7° (107)). 

f. 4-Pentvl-2,6.7-trioxa-l-phosphabicvclo-[2.2.2] octane (XCVII 

(C^H^^)) The preparation and purification of this compound by trans­

es ter if icat ion have been described elsewhere (88)(m = 44-7°, lit. m = 

45-8° (88)). 

g. 4-Methyl-2,6,7-trioxa-l-phosphabicyclo-[2.2.2] octane (XCVII 

(CHj)) The preparation and purification of XCVII (CH^) have been 

described elsewhere (108). 

5. 2,6,7-Trloxa-1-phosphabicyclo-[2.2.1] heptane (CV) 

This compound was also prepared by transesterification but by a 

slight modification of the procedure described by Denney and Varga (55); 

Dow Corning 550 Fluid was used in place of SF-96 silicone oil. The 

glycerine was purified by azeotropic removal of water with benzene 

followed by vacuum distillation of the glycerine. Purification of CV 

was performed as described (55). 

6. l-&-Butoxy-4.4-dimethvl-l-phospha-2.6-dioxacvclohexane fXXV) 

To a well-stirred ether suspension of 3.50 g of sodium ̂ -butoxide 

(36.4 mmoles), prepared Jja situ from sodium amalgam and ^-butanol, was 

added dropwise 6.04 g. of XXXVIII (35.8 mmoles). The ether refluxed 

during the addition and external heating was applied to reflux the ether 
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for an additional hour. The mixture was filtered and the residue was 

washed with ether. The ether was removed from the combined filtrates 

by atmospheric distillation and XXV was obtained in about 30% yield 

as a solid (m ça. 30°) by distillation at less than 1 mm. The small 

quantity of product precluded a measurement of the boiling point. The 

nmr spectrum consists of methylene multiplets (5 = 3.98-4.30 and 

6 = 2.95-3.35) a ̂ -butoxy singlet (ô = 1.37) and broad (6 = 1.18) and 

narrow (6 = 0.68) methyl singlets. 

7. l-Phenyl-4.4-dimethvl-l-phospha-2.6-dioxacvclohexane (XLyi) 

This compound was prepared by a modification of the method de­

scribed by Harwood (109) or Gagnaire, et al. (30). To a well-stirred, 

ice-cooled ether solution of 19.9 g of PCl^ (0.111 mole) were 

added dropwise 11.6 g of 2,2-dimethyl-l,3-propanediol (0.111 mole) 

and 17.9 ml of pyridine (0.222 mole). After removal of the pyridine 

hydrochloride by filtration and after washing of the residue with ether, 

the solution was concentrated by atmospheric distillation of the ether 

and XLVI was isolated in greater than 50% yield by distillation (b^ = 

120°, lit. b^ ̂  = 100°, m = 82-3° (109)). Gagnaire, et al. have pointed 

out the deliquescent nature of XLVI and its reaction with CCl^, CDCl^, 

C-D. and CD-COCD, (30). However, a nmr spectrum of triply-sublimed 
o o o o 

XLVI in CgHg dried with LiAlH^ showed only approximately 5% impurities. 

8. l-Thiophenoxv-4.4-dimethvI-l-phospha-2.6-dioxacvclohexane (XLVII 

To an ice-cooled, well-stirred ether solution of 4.95 g of XXXVIII 

(29.4 mmoles) were added dropwise 3.82 g of thiophenol (34.6 mmoles) and 

2.98 g of tr ie thy lamine (29.4 mmoles) in ça. 20 ml of ça. 3:1 ether/ 
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benzene. The mixtmre was stirred for an additional 30 minutes at room 

temperature and then filtered. The residue was washed with ether and 

the combined filtrates were concentrated to give crude XLVII that was 

purified by two recrystallizations from a ça. 1:1 mixture of hexane 

and ether (m = 70-5°). Another recrystallization and two sublimations 

at ca. 75° at less than 1 mm did not narrow the melting range, even 

when the sample was placed in a capillary in a nitrogen-filled dry bag 

and the capillary was evacuated before being sealed. The solid soon 

becomes moist in humid surroundings. The nmr spectrum in CDClg 

coiisists of a phenyl multiplet (6 = 7.08 - 7.55), methylene multiplets 

(6 = 3.34 - 3.72 and 6 = 4.06 - 4.39) and broad (6 = 1.20) and narrow 

(Ô = 0.69) methyl singlets. 

9. 1-Methoxy-tran8-3,5-dimethyl-l-phospha-2,6-dioxacyclohexane (XXXIII) 

and the isomeric l-methoxy-cis-3,5-dimethyl-l-phospha-2,6-dioxacy-

clohexanes (XXXII A and B) 

Denney and Denney have reported the preparation of a 1.3:1.0:2.9 

mixture of XXXII A, XXXIII and XXXII B by the action of sodium methoxide 

on a mixture of XLI and XLII derived from a ca. 4:1 mixture of mese-

and d, 1-2,4-pentanediol (24). A tertiary base and methanol were used 

here in place of sodium methoxide in two adaptations of the procedure 

described by Aksnes, et al. for preparing the unstable isomer XXVI B 

(16). The ratio XXXII B:A was between 2:1 and 4:1 in four preparations. 

These nonequilibrium mixtures can be kept for at least a month in a 

stoppered, nitrogen-fil led flask in a Dry Ice chest without appreciable 
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change of the isomer ratio. 

a. Procedure A Both a mixture of XXXIII, XXXII A and XXXII B 

and mixtures of XXXII A and B were prepared by this procedure. For 

example, 7.10 g of XLI (42.1 nsnoles) was added dropwise to an ice-

cooled, well-stirred ether solution of 1.36 g of methanol (42.5 mnoles) 

and 4.31 g of triethylamine (42.5 mnoles). The triethylamine hydro­

chloride was filtered off and washed with ether and the ether and excess 

reactants were distilled at reduced pressure below room temperature. A 

nearly-quantitative yield of a 1:2.3 mixture of XXXII A and B was ob­

tained upon distillation (b^g = 50-1°). 

b. Procedure B To an ice-cooled, well-stirred ether solution 

of 5.22 g of XLI (31.0 mmoles) were added dropwise 0.968 g of methanol 

(31.1 mmoles) and 3.0 g of pyridine (38 mmoles). The remainder of the 

procedure was as described in Procedure A. The yield was again nearly 

quantitative. 

10. Dimethyl triphenyImethyIphosphonate (C^H^)^ CP(0)(OCH^)^ 

In a modification of the procedure of Arbuzov and Arbuzov (110), 

approximately 175 ml of a 1:3 acetonitrile/benzene solution of 27.9 g 

of triphenyImethy1 chloride (0.10 mole) and 11.9 ml of trimethyl phos­

phite (0.10 mole) was heated at 60-70° until gas evolution ceased. The 

solvents were evaporated at reduced pressure and the product was re-

crystallized twice from acetone (m = 152-6°, lit. m = 156-7° (110)). 

Sublimation at ça. 150° at less than 1 mm gave a solid melting at 

o 1 
151.5-3.0 . The H nmr spectrum in CDCl^ consists of a triphenyImethy1 

multiplet (6 = 7.06-7.50) and methoxyl doublet (6 = 3.51, J(POCH) = 10.7). 
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11. l-0xo-l-trlphenylniethvl-4.4-diinethvl-l-phospha-2.6-dioxacvclo-

hexaae (I) 

This compound was a gift from R. D. Bertrand and was purified by re-

crystallization frtsn acetone (m = 209-211°, lit. m = 211.5-212° (35)). 

12. Isomeric l-oxo-l-triphenylmethyl-c_i£-3,5-dimethyl-l-phospha-2,6-

dioxacyclohexanes (CXIX and CXX) 

To 3.50 g of vacuum-dried triphenylmethyl chloride (12.5 mmoles) 

was added sufficient acetonitrile (twice-distilled from phosphorus 

pentoxide) to dissolve the solid. The solution was heated to ça. 50° and 

1.95 g of a 1:2.6 mixture of XXXII A and B (11.8 mmoles total) was 

added. The solution was held at 70-90° for ça. two hours and then 

evaporated at reduced pressure. A nmr spectrum of the crude product 

in CDCl^ contained no methoxyl doublet resonance and indicated a 1:2.3 

ratio of isomeric phosphonates. The major isomer was separated from the 

reaction mixture by fractional crystallization from acetone (m = 203-5°). 

A ~H nnrr spectrum of a CDCl^ solution of this isomer consists of a tri­

phenylmethyl multiplet at 6 = 7.1-7.7, a C^(^- methinyl multiplet at 

Ô = 3.3-3.9, a C^-methylene multiplet at 6 = 1.3-2.2 and a C^C^-methyl 

doublet of doublets at 6 = 1.21 (J(HCCH) = 6.2, J(POCCHg) = 1.4). The 

minor isomer was considerably more soluble in acetone than the major 

isomer and was not isolated from the above mixture. The minor isomer 

\gas obtained by employing XXXII A instead of a mixture of XXXII A and B 

in the above procedure. The product was purified by recrystallization 

from a ça. 2:1 mixture of tetrahydrofuran and hexane to give a pale yel­

low solid (m = 173-5°). The nmr spectrum of a CDCl^ solution consists 



www.manaraa.com

55 

of a trlphenylmethyl multiplet at 6 = 7.0-7.6 with considerably less 

fine structure than that for the other isomer, a C^C^-methinyl 

multiplet at 6 = 4.4-5.0, a C^-methylene multiplet at 6 = 1.2-1.8, and 

a CgCg-methyl doublet of doublets at 6 = 1.04 (J(HCCH) = 6.2, J(POCCH^) = 

1.8). An unsuccessful attempt to isomerize CXIX and CXX was made by 

heating a solution of each in a 3:1 mixture of acetonitrile and water 

at 90-100° for 24 hours. The melting point of neither residue was de­

pressed from the values given above. 

13. Cyclic phosphates prepared by nitrogen dioxide oxidation of phos-

phites 

In a modification of "Method B" described by Cox and Westheimer 

(111), nitrogen dioxide was passed (either directly from a tank or first 

through a tube containing phosphorus pentoxide in the case of a sample 

prepared (112, pp. 85-9) by G. K. McEwen (99b)) into an ice-cooled, 

stirred, concentrated solution of a phosphite until a permanent pale 

green color developed. In all instances except where indicated, carbon 

tetrachloride was the solvent. The solution was evaporated or the 

precipitate was filtered and the product purified as described below. 

a. 1-Methoxy-1-oxo-l-phospha-2,5-dioxacyclopentane (I) Distil­

lation under 0.6 nm took place at 93-5° (lit. b^ = 85-6° (113), b^ ̂  = 

89-92° (114)). The nmr spectrum in C^Hg consists of a methylene 

multiplet (5 = 3.85-4.24) and methoxyl doublet (6 = 3.54, J(POCH) = 11.7). 

b. 1-Methoxy-1-oxo-l-phospha-2,6-dioxacyclohexane (LXXVIII) Dis­

tillation under 0.4 mm took place at 115-8°. The nmr spectrum in 

C,H. consists of a C,C--methylene multiplet (6 = 3.77-4.26), a methoxyl 
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doublet (6 = 3.52, J(POCH) = 10.9) and G^-methylene multiplet (6 = 

0.95-2.18). 

c. l-Methoxv-l-oxo-4,4-dimethyl-l-phospha-2.6-dioxacyclohexane 

(LX or VIII ̂) This compound was recrystallized from carbon tetra­

chloride (m = 93.5-94.5°, lit. m = 94° (86)). 

d. l-^.-Butoxv-1- oxo-4.4- dime thy 1- 1-phospha- 2.6-dioxacyc lohexane 

(IX^) This compound was recrystallized from carbon tetrachloride. 

e. 1-Oxo-l-methoxy- c is - 3.5- d imethy 1- 1-phos pha- 2,6- d ioxacyc lo­

hexane (CXXI) This compound was prepared from the stable phosphite 

XXXII A. Â rmir spectrum of the reaction mixture after evaporation 

of the solvent consists of a C^C^-methinyl multiplet at 6 = 4.22-4.87, a 

methoxyl doublet at 6 = 3.68 (J(POCH) = 10.8), a C^-methylene multiplet 

at 1.5-2.2 and a C^C^-methyl doublet of doublets at 6 = 1.31 (J(HCCH) = 

6.2, J(POCCHg) = 2.5). This spectrum contains no resonance correspond­

ing to the phosphite or to another phosphate isomer. This sample can be 

caused to crystallize by adding ether and cooling in a Dry Ice chest. 

f. l-Oxo-2,6,7-trioxa-1-phosphabicyclo [2.2.1] heptane (CVII) 

Ether was used as a solvent for the oxidation in place of carbon tetra­

chloride. Reprecipitation of the crude product from dichloromethane 

with ether gave a white solid which did not completely dissolve in 

acetonitrile. All of the organic materials were scrupulously dried: 

ether with sodium, dichloromethane with magnesium sulfate and acetoni­

tr ile with phosphorus pentoxide. The Denneys prepared CVII by this 

method and reported that it was very sensitive to moisture and decom-

1 
posed upon heating (55). The H nmr spectrum in CILCN contains the re­
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sonances reported (55) and a broad weak peak at 3.90 although the ratio 

of intensities of methylene and methine resonances is closer to 5:1 than 

to the 4:1 ratio reported (55). The infrared spectrum in CHgCl^ con­

tains the reported P=0 band at 1346 cm ^ (55) and a second sharp, 

equally intense band at 1355 cm 

14. l-Cbco-4-pentvl-2..6,7-trioxa-l-phosphabicyclo-[2,2.2] octane 

(XCIXCC.H^^)) 

The preparation of this compound by hydrogen peroxide oxidation has 

been described elsewhere (88) (m = 136-9°, lit. 134-7° (88)). 

15. Trialkyl phosphite boranes 

a. Procedure A Carbon dioxide was bubbled through a mixture of 

sodium borohydride, triall^l phosphite, and tetrahydrofuran as described 

by Reetz (115). 

1. TrTTnethvlphosphite borane (CII) The nmr spectrum 

obtained neat consists of a methoxyl doublet (6 = 3.67, J(POCH) = 10.9) 

and a quartet of doublets (6 = 0.30, J(^^BH) = 96.3, J(P^^BH) = 

19.7, lit. J(^Sh) = 97.2 (116)). 

2. l-Borino-l-methoxv-4,4-dimAthyl-l-phospha-2,6-dioxa-

cyclohexane (LSOCIX) The solid adduct was recrystallized from benzene. 

The nmr spectrum in CDCl^ consists of a C^C^-methylene multiplet 

(6 =3.43-4.34), a methoxyl doublet (6 = 3.71, J(POCH) = 11.1), a broad 

methyl singlet (5 = 1.24), a narrow methyl singlet (6 = 0.85) and a 

broad ^^BH^ quartet (6 = ça. 0.3). 
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b. Procedure B Standard vacuum line procedures were employed 

in the reaction of diborane with the phosphite. The phosphite was 

dissolved in ether (dried with LiAlH^) and the diborane was purified by 

trap-to-trap distillation (traps at -112° and -196°). A 5-10% excess of 

diborane, based on a 1:1 B to F ratio, was condensed in two or three 

portions onto the phosphite at -196°. The reaction mixture was warmed 

after each addition to -40° (liquid nitrogen-chlorobenzene slush bath) 

and stirred with a magnetic jump-stick. The ether and excess diborane 

were distilled from the product which was not further purified. 

1. l-Borino-l-methoxv-l-phospha-2,5-dioxacyclopentane (CXXII) 

This adduct melts a few degrees below room temperature. The rmrr 

spectrum obtained neat consists of a methylene multiplet (6 = 4.04-4.61), 

a methoxyl doublet (6 = 3.68, J(POCH) = 11.4) and a broad ^^BH^ quartet 

(6 = 0.37+.05 , J = 92+ 2). 
•^"BH 

2. 1-Borino- 1-methoxy-l-phospha-2,6-dioxacyclohexane (CXXIII) 

This adduct is a liquid and its nmr spectrum obtained neat consists 

of a CgC^-methylene multiplet (6 = ça. 3.8-4.64), a methoxyl doublet 

(6 = 3.69, J(POCH) = 11.0), a C^-methylene multiplet (6 = 1.47-2.64) and 

a broad ^^BH^ quartet (5 = ça. 0.3). 

3. Isomeric l-borino-l-methoxy-4-methvl-4-chloromethyl-l-

phospha-2.6-dioxacyclohexanes (LXXX and IiXXXI> Reaction of 3.3:1 and 

1:1.8 mixtures of the phosphites XXXI Â and B with one equivalent of 

diborane gave 3.0:1 (damp solid) and 1:1.7 (liquid) mixtures, respective­

ly, of the corresponding adducts IXXXI and LXXX. The nmr spectrum of 

the 3.0:1 mixture in CDC1^includes a methoxyl doublet (6 = 3.76, J(POCH)= 
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11.0), chloromethyl singlets (6 = 3.78-niajor, 6 = 3.44-niinor) and methyl 

singlets (6 = 0,91-major, 6 = 1,30-minor). 

4» Isomeric 1-bor ino- l-methoxy-&i&-3,5-dime thy 1- l-phosnha-

2,6-dioxacvclohexanes (XC and XCI) The phosphite XXXII A and a 1:2.3 

mixture of XXXII A and B with diborane gave a single solid adduct isomer 

(XCI) and a 1:2.4 liquid mixture of two adduct isomers (XCI and XC), re­

spectively. The solid XCI can be recrystallized from a 3:1 mixture of 

cyclohexane and benzene (m = 76-77.5°C). The mnr spectrum of XCI 

in CDCl^ includes a C^C^-methinyl multiplet (6 = 4.34-4.90), a methoxyl 

doublet (6 = 3.71, J(POCH) = 10.8), a C^-methylene multiplet (6 = 

1.57-2.05), and a C^C^-methyl doublet of doublets (6 = 1.34, J(HCCH) = 

6.3, J(POCCHg) = 0.9). Examination of the 1:2.4 mixture as a neat 

liquid and in a benzene solution permitted separation of the C^C^-methyl 

and methoxyl resonances while the other resonances overlap extensively. 

In the nmr spectrum of XC, J(POCH) = 11.2 (C^H^), J(POCCH^) = 0.9 

(neat) and J(HCCHg) = 6.2 (neat). 

5. l-Borino-4-methyl-2,6,7-trioxa-l- phosphabicvclo [2.2.21 

octane (XCVUKCH^)) The preparation of XCVIII (CH^) has been pre­

viously described (117) (J(PCCH) = 4.2 (neat), lit. 4.2 (116)). 

6. l-Borino-2.6,7-trioxa-l-phosphabicvclo [2.2.1] heptane 

(CVI) The nmr spectrum in CD^CN consists of a methine doublet of 

triplets (5 = 5.50, J(POCH) = 20.0, triplet spacing = 3.1, a methylene 

multiplet (6 = 3.9-4.6) and a ^^BH^ quartet of doublets (6 = 0.61, 

J(^^BH) = 102, J(P^^H) = 20). Resonances due to the phosphite (CV) were 

present in the CD^CN spectrum (ça. 15% of total phosphorus) but not in 

a benzene spectrum. The adduct does not melt sharply but begins de-
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composing in a sealed evacuated capillary tube at ça. 80°. The adduct 

is best stored under nitrogen in a freezer. 
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IV. RESULTS AND DISCUSSION 

Â. Dipole Moments 

The dipole moment of a compound containing polar bonds is dependent 

on the conformation of the molecule. Dipole moments of twenty-three 

compounds have been determined and will later be ccanpared among them­

selves, with others and with those calculated by a vector-summation 

of bond moments in an attempt to deduce the stereochemistries of 1-

phospha-2,6-dioxacyclohexanes. The purpose of this Section is to pre­

sent the experimental results and to discuss some methods of predicting 

molecular dipole moments. The following data for the twenty-three 

solutes are given in Table 6: dielectric constant (e) and solute mole 

fraction (X) for three or four benzene solutions and the solvent benzene 

at 25.00 + 0.05°C, the equation for e as a function of X as determined 

from a least-squares plot, the slope of a plot of index of refraction 

versus X, and the orientation polarization (Pg) as calculated from 

the Cohen-Henriquez equation (118). The resultant dipole moments were 

calculated from these data with the Debye equation (118). In the cases 

where the solute is a mixture of geometrical isomers, the resultant 

moment is a weighted root mean square average of the moments of the 

components. In order to determine the molecular moments (H^ and p^), 

1 2 
resultant moments (|J. . and p. , ) of two mixtures of different molar 

ODS oos 

component ratios (Y;l and Z:l) or a mixture (Y:l) and one of the 

components (Z:1=0) were used to solve the following two simultaneous 

equations : 
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Table 6. Dlpole moment data 

^ Dielectric^ 
Solute Constant,e 

CI P(OCH„)- 2.326 
2.301 
2.289 
2.282 
2.275 

CII H,B:P(OCH.), 2.382 
^ ̂  2.329 

2.302 
2.276 

CV :P(OCH )_CH 2.424 

I I 2.351 
0 ' 2.314 

2.295 
2.276 

CVI H B:P(OCH ) CH 2.833 
^ ^ 2.556 

2.416 
2.345 
2.275 

1 I 
III rPOCH CH 0 2.392 

I ^ 2.334 
OCH, 2.305 

2.291 
2.276 

I n n 1 

Mole 
Fraction 

XxlO^ 
e=f(X) P," 

11.09 
5.533 
2.764 
1.380 
0.000 

4.671 
2.333 
1.165 
0.000 

10.11 
5.044 
2.517 
1.260 
0.000 

10.29 
5.130 
2.562 
1.279 
0.000 

13.13 
6.552 
3.272 
1.635 
0.000 

4.513X+2.276 

22.80X42.276 

14.67X+2.276 

54.23X+2.276 

8.773X+2.277 

0.17 74.06 

-.10 339.0 

0.07 219.5 

-0.098 799.3 

0.004)01 128.6 
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XXXIV 

0=POCH_CH_6 

I 
OCH« 

zPOCH^CH^ciÇl 

OCH, 

LXXVIII 0=P0CHgCHgCHg6 

OCHo 

LXXIX HgBzPOCH^CCCH^^^CH^ 

OCH, 

2.648 
2.461 
2.369 
2.322 
2.275 

2.382 
2.329 
2.303 
2.289 
2.276 

2.731 
2.503 
2.390 
2.333 
2.276 

2.702 
2.489 
2.384 
2.332 
2.277 

13.43 
6.693 
3.342 
1.667 
0.000 

9.823 
4.898 
2.449 
1.223 
0.000 

10.59 
5.279 
2.634 
1.316 
0.000 

8.283 
4.121 
2.058 
1.027 
0.000 

27.68X+2.276 

10.77X+2.276 

42.92X42.276 

51.16X+2.278 

-0.067 408.7 

-0.094 162.0 

-.033 631.9 

-.098 754.3 

Structural formulas for compounds symbolized by primed Roman numerals are in Table 14. 

'^Measured in benzene solution at 25.00 + 0.05°. 

^The Indices of refraction, n^, were measured at 25.0 + 0.2°. 

Orientation polarization. 
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^ Dielectric^ 
Solute Constant,s 

XXXII A :POCH(CH-)CH.CH(CH_)6 2.4215 

ÙCH 

3' 2 ̂  3' 

3 

I 

2.351 
2.316 
2.297 
2.278 

XCI H„B;POCH(CH„)CH CH(CH„)0 2.870 
^ ^ ^ ^ 2.572 

iCH_ 2.425 
2.353 
2.279 

XXXII A I , 
and B :POCH(CH-)CH CH(CH„)0 2.440 

' J / J 2.360 

OCH, 2.319 
^ 2.298 

2.278 

2.495 
2.387 
2.333 
2.306 
2.277 

XC H_B:POCH(CH_)CH CH(CH )i 2.865 
and. ^ I ^ ^ 2.567 
XCI OCH„ 2.421 

2.350 
2.278 

Mole 
Fraction 

XxlO^ G=f(X) ôn /ax= P ® 
D U 

11.84 
5.892 
2.939 
1.467 
0.000 

12.36X+2.279 0.17 188.7 

10.79 
5.368 
2.674 
1.336 
0.000 

54.73X42.279 -0.079 807.0 

10.91 
5.432 
2.710 
1.354 
0.000 

14.79X42.279 -0.16 223.9 

14.36 
7.124 
3.560 
1.778 
0.000 

15.13X42.278 -0.16 228.4 

11.93 
5.925 
2.954 
1.476 
0.000 

49.27X42.277 -0.11 728.1 
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LXXX H_B:POCH G(CHL)(CHLCl)CH Ô 
and I ^ 
Lxxxr OCH. 

LXXX H-B:i'OCH-C(CH,)(CH C1)CH3 
and 3 I 2 3 2 

LXXXI OCH^ 

r 1 
0=P0CH2C(CH3)2CH20 

^W6»5>3 

CXIX^ 0=POCH(CHg)CH2CH(CH2)t 

^«=6»5>3 

2.744 9.967 
2.508 4.948 
2.391 2.466 
2.333 1.230 
2.274 0.000 

2.673 9.403 
2.473 4.671 
2.374 2.328 
2.325 1.161 
2.274 0.000 

2.435 6.834 
2.359 3.544 
2.317 1.773 
2.295 0.837 
2.276 0.000 

2.447 6.353 
2.355 2.894 
2.318 1.552 
2.295 0.704 
2.276 0.000 

47.13X+2.274 

42.30X+2.275 

23.35X+2.276 

26.84X+2.277 

0.00+0.01 691.9 

0.00+0.01 621.0 

+0.47 322.0. 

+0.52 371.3 
o\ 
a> 

^Percentage of XXXII B was 49 + 8% In first set of samples and 50 + 6% in second set. 

^Percentage of XC, derived from XXXII B, was 72 + 2%. 

^Percentage of LXXX, derived from XXXI B, was 25 + 2%. 

^Percentage of LXXX was 63 + 2%. 

Prepared from XXXII A. 
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^ Dielectric. 
Solute Constant,e 

CXX^ 0=POCH(CH_)CH_CH(CH_)0 2.549 
I J / J 2.436 
C(C,H:). 2.360 

2.321 
2.276 

XXIl' 0=P0CH„CH[C(CH„)„] CH,0 2.590 
I ^ J J / 2.437 
CH„ 2.353 

2.315 
2.275 

XXI' 0»PCCH„CHCC(CHo)o3CH_0 2.750 

I 2.519 
CH 2.407 

2.334 
2.276 

X' O4OCH CHCC(CH ) ]CH & 2.676 
I J J ^ 2.481 
0CH_ 2.388 

2.334 
2.277 

XI ' 0=POCH„CHCC(CH-)„]CH-0 2.647 

I 2.462 
OCH, 2.371 

2.323 
2.276 

Mole 
Fraction 

XxlO^ G=f(x) ônjj/ôx^ Pgd 

6.778 40.33X+2.275 +0.43 573.0 
4.008 
2.100 
1.122 
0.000 

11.16 28.18X+2.276 -0.053 416.0 
5.725 
2.715 
1.380 
0.000 

10.90 43.48X42.277 -0.036 639.9 
5.551 
2.964 
1.309 
0.000 

11.21 35.68X42.276 -0.071 526.7 
5.754 
3.174 
1.623 
0.000 

8.433 43.91X4-2.277 -0.093 648.6 
4.190 
2.106 
1.044 
0.000 
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CXXl/ S=POGH,CH[C (CH^ >2 ]CHq& 

Ach„ 

2.747 
2.517 
2.412 
2.356 
2.276 

11.16 
5.655 
3.183 
1.862 
0.000 

42.20X+2.277 0.00+0.01 619.5 

•^Prepared from XXXII B. 

Iç 
Prepared from XXX A. The _t-butyl and methoxyl groups are els (98). 
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+ (M^)' = (^L)' 

The molecular moments of the twenty-three compounds and of others to be 

discussed are given in Tables 7 and 8. The moment of XXXII B has an un­

certainty of about 0.08 D due to the different isomer ratio XXXII A: 

XXXII B before and after the measurement of the dielectric constant. 

Table 7 also includes moments for the two possible chair conformers 

for each of the six-metnbered monocyclic compounds except LKXII as 

calculated by a vector summation of bond moments. This vector summation 

requires structural data and a set of bond moments. No structural data 

are available for a trivalent phosphorus compound or for a BH^ adduct. 

As a consequence all of the compounds in solution are assumed to have 

the ring structure of 1-oxo-1-phenoxy-l-phospha-2,6-dioxacyclohexane (L) 

(33) in the solid state. The bond angles and distances are shown in the 

planar figure below. In L, the OLP.O plane makes an angle of ça. 144° 

2 3 

with the O^CgCgO^ plane and the plane makes an angle of ça. 128° 

with the CgC^Cg plane. In addition, the RPY angle (see figure in Table 

3 for notation) is assumed to be 114° as in L and the PY and PR bonds are 

assumed to make angles of 136° and 110°, respectively, with the ring OPO 

plane as can be calculated from the bond angles and distances for L. The 
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Table 7. Calculated and experimental dlpole moments of some l-pho8pha-2.6-dloxacvclohexane8 

( i )  

Compound 

Experimental 
Moment, 

d" Structure R 

( i i )  

R. R, 

Calculated 
Moment® 

XXXIV 

XXXII A 

zPOCHgCHgCHgO 

OCH„ 

:POCH(CH^)CHgCH(CH^ )t 

OCH. 

2.82 

3.04 

XXXII B :i'OCH(CHj)CH2CH(CH^)0 3.6 

OCHn 

(i) 

(ii) 

OCH, 

OCH„ 

H 

H 

H 

H 

1.6 1j1 

2.2 3.4 
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LXXIX H2B:PÔCH^C(CH^)^CH^0 

OCH„ 

6.07 

XGI H^B:&0CH(CH2)CH2CH(CH2)6 6.28 (1) OCH3 BH3 H H 5.8 7.2 

OCH3 (11) OCH3 BH3 H H 4.4 6.2 

XC H3B ; i'OCH(CH3)CH2CH(CH3 )Ô 5.89 

OCH3 

LXXXI HgBl&OCHgC (CHgCl) (CH3 )CH2/) 6.01 (1) OCH3 BH3 CHgCl CH3 5.8 Ld 

OCH3 (i) OCH3 BH3 CH3 CH^Cl 6.6 7.9 

LXXX H3B:&0CH2G(CH2C1)(CH3)CH26 5.21 (11) OCH3 BH3 CHgCl CH3 4.8 6.3 

OCH3 (11) OCH3 BH3 CH3 CH2CI 4.8 6.4 

LXXVIII O4OCH-CH-CH„C) 
1 / 6 Z 

5.55 (i) OCH3 0 H H 4.4 M 

OCH3 (11) OCH3 0 H H 3.1 5.0 

^Structural formulas for compounds symbolized by primed Roman numerals are in Table 14. 
Reasons for structural conclusions are given in the text. 

employed as solvent unless otherwise indicated. 

^Ring P-0 moments of 1.0 towards oxygen and 0.6 towards phosphorus were employed to determine 
moments 1 and 2, respectively. The underlined moments are considered "best" values. See text 

for discussion. 
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Table 7 (continued) 

Experimental 
Moment, Calculated 

Compound* Structure R Y ^5 ^6 1 2 

X' 

XI 

CXIX 

cxx 

XXI 

XXII 

0=P0CH_CH[C(CHL).ICHLO 
I '3'3 

OCH3 

QefOCHgCHCc(CH^ >3ICH^O 

OCH„ 

o=pôcH^c(cïy^cH^ 

°<°6"5>3 

0=POCH(CH,)CH,CH(CH,)0 
I J Z u 

^<^6»5>3 

0=P0CH(CH3)CH2CH(CH3)i 

OePOCHgCHCc(CHg)gICHgk 

^ 

0=P0CH^CH[C (CHg >2ICH,!) 

5.08 

5.63 

3.97 

4.26 

5.29 

4.51 

5.60 

(i) 

(ii) 

(i) 

(i) 

CH„ 

(i) 

(ii) 

OCH3 

OCH, 

CH„ 

CH„ 

0 

0 

C(CgH,), 0 

(ii) C(CaHg)g 0 

C(CgH,), 

(ii) C(CaHg)2 

0 

0 

0 

0 

C^CHg)^ 

C(CH3)3 

CH^ 

CH^ 

H 

H 

H 

H 

CH^ 

CH3 

H 

H 

C(CH3)3 H 

C(CH2)2 H 

4.4 

3.1 

5.8 

5.0 

5.01 6.17 

2.96 4.66 

5.01 6.17 

2.96 4.66 

5.01 6.17 

2.96 4.66 
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CXXIV^ S^POCHgCHCc(CH^)g]CHgO 5.50 (i) OCH3 S CCCH,), H 4.03 5.61 

1 ' 
OCH3 (ii) OCH3 S CCCH,), H 2.89 4.72 

cxxv® S=P0CH2CH2CH(CH3)0 5.36 ks (i) OCgHg s H H 4.03 5.61 

CXXVI^ SejoCHgCHgCHCCHg)^ 3.19 (ii) OCgHg s H H 2.89 4.72 

XIX ' 0=P0CH2C(CH2)(CH2Br)CH26 5.25^ (i) CH3 0 CH3 CH2Br 5.6 6.6 

'«3 (ii) CH3 0 CHgBr CH3 3.2 4.6 • 

XXIII' 0=P0CH2C(CHg)(CH^Br)CH2Ô 4.75^ (i) C2H5 0 CH3 CHgBr 5.6 6.6 

C2H3 (ii) C2H5 0 CH^Br CH3 3^2 4.6 w 

^Prepared from XXXII A. 

^Prepared from XXXII B. 

^Prepared from XXX A. The t^butyl and methoxyl groups are cis (98). 

^Prepared from XXVI A. The methyl and ethoxyl groups are trans (95). 

^Prepared from XXVI B. The methyl and ethoxyl groups are cis (95). 

^ônjj/ôX was not determined. 
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Table 7 (continued) 

Experimental 
Moment, 

Oi b 
Compound D Structure 

XXIV ' 0=P0CH2C(CH3)(CH2Br)CH^ 4.78^ (i) 

xx' 

XXV ' 

n-C^Hy (il) 

XXXII ' O^POCHgC (CHg ) (CHgBr )CH2(Î) 6.59^ (i) 

Br (il) 

0=&0CH2C(CH2)(CH2l)CH26 4.95^ (!) 

3 
I 

(il) 

0=POCHC(CH3)(CH2l)CH20 4.46^ (i) 

n-CgHy (il) 

III' 0=t0CH2C(CH2)(CH2Cl)CH^& 4.52^ (i) 

C(CgHg) (ii) 

XXIX ' 0=:'OCU^C(C^R^)iCE^Cl)CU^O 5.30^ (!) 

CHgC^Hg (ii) 

R Y 
*5 *6 

Calculated 
Moment*^ 

1 2 

n-CjH^ 0 CH3 CH^Br 5.6 6.6 

n-CjHj 0 CH2Br CH3 3^ 4.6 

Br 0 CH3 CHgBr 4.8 èA 
Br 0 CHgBr CH3 3.0 4.7 

CH3 0 CH3 CH2I 5.6 6.6 

CH3 0 CH2I CH3 3^ 4.6 

n-CsH? 0 CH3 CHgl 5.6 6^ 

n-CgHy 0 CH2I CH3 hl 4.6 

G(CgH,)3 0 CH3 CH2CI 5.7 6.7 

CCCgHg), 0 CHgCl CH3 3.2 4.7 

CH^CaH, 0 C2H5 CH2CI 5.7 iiZ 

^«2S«5 0 CH2CI C2H3 hl 4.7 
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XXX 

LXXII 

1 4 
0=P0CH2C(C2Hg)(CH2Cl) 0^,0 3.42^ 

Ws 

0=POCH2C(C2Hg)(CH2Cl)CH^ 5.02 

NCCHgCHgXgCHg 

(i) 

(11) 

(i) 

(11) 

^CCl^ employed as solvent. 

CH2CgHg 0 CH2CI CgHg 4.8 

CHgC^Hg 0 CgHg CHgCl 3^0 

NCgH^Q 0 C2Hg CHgCl 

NCgH^o 0 CHgCl CgHg 

Id 

4.6 

in 



www.manaraa.com

76 

Table 8. Miscellaneous experimental dipole moments 

Compound Dipole Moment, Reference 

CI zPCOCBg)^ 1.90 
1.81 70 

CIII 0=P(OCH3)3 3.18 70 

CXI HgBiPCOCag)^ 4.07 

xcvilcchg) ;P(0CH2)3CCH3 4.15» 

4.13 
119 
120 

xcixcchg) 0=P(0CH2)3CCH2 7.10» 119 

XCVIIKCH^) H3B:P(0CH2)3CCH2 8.60» 117 

S=P(0CH2)3CCH3 6.77» li9 

CV :P(0CH2)2CH 

. 0 1 
3.28 

CVI H-B;P(OCH-).CH 
3 1 2 2. 

0 « 

6.25 H-B;P(OCH-).CH 
3 1 2 2. 

0 « 

III :POCH CH 6 

1 
OCH3 

1 -1 
0=POCH CH 0 

1 
OCH3 

2.51 :POCH CH 6 

1 
OCH3 

1 -1 
0=POCH CH 0 

1 
OCH3 

I 

:POCH CH 6 

1 
OCH3 

1 -1 
0=POCH CH 0 

1 
OCH3 

4.47 

:POCH CH 6 

1 
OCH3 

1 -1 
0=POCH CH 0 

1 
OCH3 

employed as solvent unless indicated otherwise; 25°. 

»0(CH2CHg)^0 employed as solvent. 
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angles about and the CCCl, CCBr, and CCI angles are assumed to be 

110°. The POC angle of an exocyclic POCH^ group is given a value of 

120°, which is between the values of 119° and 123° found in the solid 

state structures of I and II, respectively. In reality, the trivalent 

phosphorus compounds and the adducts probably have RPO, OPO, YPR, 

YPO and POC angles that are different than those of the phosphates. In­

dicative of the dependence of bond angles on the nature of the Y group 

are the average POC and OPO angles of 122° and 100°, respectively, for 

the transition metal complex C(CH^) (57b) and 115° and 104°, respective­

ly, for the phosphate XCIX(CH^) (58). Similarly, the average POC and 

OPO angles are 116° and 103°, respectively, for the transition metal 

complex XCVI (57b) and 113° and 105°, respectively, for the thiophosphate 

XCV (59). 

The set of bond moments is given in Table 9. 

Table 9. Bond moments 

Bond Moment, D Bond Moment, D 

C-H 0.0 P-0 (ring) 1.0 
C-C 0.0 or 
C-0 1.16 0-P (ring) 0.6 
C-Cl 1.86 P=0 2.95 
C-Br 1.6 P-BR^ 4.45 
C-I 1.6 P=S ^ 2.62 
C-P 1.0 
P-Br 0.39 
P-0 1.0 

(exocyclic) 
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The negative end of the bond dipoles is toward the atom at the right end 

of the bond. Â moment is said to be directed towards a particular atom 

if the negative end of the dipole is nearer that atom than the other. 

The term "bond moment" is used here with two meanings. In both defini­

tions it is a vector. The magnitude of the first kind of bond moment 

is ideally the product of the separation of the centers of positive and 

negative charges and the magnitude of either charge. The negative charge 

is due to the valence shell bonding and nonbonding and non-valence shell 

electrons. However, if one or both of the bonded atoms are bonded to other 

atoms, the contributions of these electrons are reduced accordingly. For 

example, the negative charge contribution to the C-0 bond moment in 

dimethyl ether includes one-half of the oxygen and one-fourth of the 

carbon non-valence shell electrons, the valence shell bonding electrons 

in one C-0 bond and one-half of the oxygen valence shell nonbonding 

electrons (rather than one lone pair of electrons). The positive charge 

is due to protons located at the bonded nuclei. The magnitude of each 

nuclear charge is equal to the negative charge contributed by each atom 

as outlined above and would be 1.5 for carbon and 4 for oxygen in 

dimethyl ether. These bond moments are usually empirically determined 

by resolving the measured moment of a molecule of known or assumed 

structure into component bond moments. Secondary moments may be induced 

by the primary bond moments and these primary moments are dependent on 

the electronic structure of the molecule. Therefore, caution is re­

quired when using a bond moment derived from one molecule to predict the 
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molecular moment of another. Empirically derived bond moments are 

assumed to be parallel to the respective bonds. Although this 

assumption has been made in all the vector summations of bond moments 

thus far located in the literature, it is invalid for P-0 and C-0 moments 

for reasons to be presented later. Thus, bond moments function only as 

an effective value when this assumption is incorrect and cannot be 

easily interpreted in terms of charge separation. Knowledge of the 

position of the bond moments with respect to the bonded atoms is not 

needed in the following discussion. Another type of bond moment is 

better called a bond-format ion moment. The P=0, P-BH^ and P=S moments 

are examples of this type and are the differences between the molecular 

moment of a bicyclic phosphite (XCVII(CH^)) and the moments of the cor­

responding phosphate, borane adduct and thiophosphate, respectively. 

These moments do not include the phosphorus lone pair moment as it exists 

in the phosphite because it is incorporated among the P-Br, P-0, etc. 

bond moments. On the other hand, these moments do include any change in 

molecular charge distribution that occurs upon formation of the P=0, 

P-BHg and P=S bonds. Also, they are directed towards the acceptor atom 

or group of atoms and are parallel to the bond. The P-BH^ moment also in­

cludes the B-H moments. The P=0 and P==S moments are smaller than the 

values of 3.34C.1 and 3.0+0.1 D, respectively, selected by Estok and 

Wendlandt (121) as the most probable when these bonds are not appreciably 

influenced by Induction. The smaller values will be used because they 

were derived from molecules similar to those being investigated. 
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An explanation of the sources of the other bond moments listed above 

is now in order. Snyth has discussed the difficulties assigning a C-H 

bond moment (122, pp. 239-243). He discusses how values ranging from 

0.4 D in one direction to 0.4 D in the other have been proposed. A 

value of 0.0 D is arbitrarily used here instead of 0.4 D directed towards 

carbon which was chosen by Snyth. The C-Cl, C-Br and C-I moments are 

taken as the molecular moments of CH^Cl, CH^Br and CH^I, respectively, 

in benzene (123). The C-0 moment was calculated from the molecular 

moment, 1.32D (124), and the CGC angle, 111° (125), of dimethyl ether. 

The fact that COP angles in alkyl phosphorus esters are 115-123° in­

dicates that the hybridization of the oxygen valence orbitals is not the 

same in these compounds and in dimethyl ether. Thus, the C-0 moment 

derived from dimethyl ether is undoubtedly incorrect but will be used 

to calculate the moments of phosphorus compounds simply because no 

better value is available. The P-Br moment was calculated from the 

molecular moment of 0.52D (123) and the BrPBr angle of 101.5+1.5° (126) 

of PBr^ and includes one-third of the phosphorus lone pair moment. The 

C-P mcxnent is an average of allq^l-P moments calculated by Kodama, et al. 

(127) from structural and dipole moment data for several mono and 

trialkyl phosphines and includes one-third of the phosphorus lone pair 

moment. This moment is directed towards phosphorus because the moment of 

P(2-C^H^C1)^, 0.65 D (123), is less than that of ^(CgHg)^, 1.40 D (123). 

Kosolapoff has cited a C-P moment of 0.9 D implicitly directed towards 

phosphorus (69) but in the English translation of the Russian source of 

this monent (128) the direction is stated explicitly to be towards carbon 
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in compounds of the type (RC^gPCOOCNR^ wherein R is an alkyl group. 

0 
Other translations of Russian papers include values for the P-C manent 

of 0.7 D (129) and 0.8 D (130) directed towards carbox in a P-alkyl group 

in molecules such as RP(0)(OC2H^)2 and C^H^P(0)H(0R) but 0.8 D directed 

towards phosphorus in a P-CCl^ group in (RO)P(0)(C2H^)(CCl2) (130). The 

Russian values depend on the validity of the other bond mcxnents in the 

molecules investigated. Unfortunately, the justification of these 

moments is given in a Russian Ph.D. Thesis (131) which is not available. 

The P-0 (ester) moment of 1.2 D directed towards oxygen may have been 

taken from the work of Lewis and Snyth (67) and, if this is true, it was 

derived from a freely-rotating model of P(0CgHg)g by a vector summation 

calculation. The Russians have employed this value in molecules for which 

rotation about the P-0 bonds was considered to be restricted. This pro­

cedure will later be shown to be incorrect and, for this reason, the 

Russian P-C moment will not be used. The P=0, P-BH^ and P=S moments 

were discussed earlier. 

Three entries for the P-0 moment are given in the list above. Each 

of these includes one-third of the phosphorus lone pair moment and one-

half of the resultant oxygen lone pairs moment. The oxygen is covalently 

bonded to an alkyl group and, thus, these P-0 mcments should be distin­

guished from the P=0 moment. The value for the exocyclic P-0 moment and 

the first of the ring P-0 moments was derived by the method of Zahn as 

described by Partington (132, p. 485) from the moment of trimethyl phos­

phite (Table 8), the H-C and C-0 moments given above, a POC angle of 

120° and an angle of 66° between each of the P-0 bonds and the three-fold 

rotational axis of the PO^ group. The use of Zahn's method requires the 
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assumption that the methyl groups are freely rotating about the P-0 

bonds. The resultant molecular mmnent is then a root mean square average 

of all of the possible conformer moments; The molecular moment of 

t r i m e t h y l  p h o s p h i t e  i s ;  V =  V +  ! J ^  
1 2 3 

1 2  2  
V P-g + 3Miĵ  , wherein jig is the magnitude of the vectorial sum of the 

non-rotating bond moments and the components of the rotating moments 

(C-C[) parallel to the respective rotational axes kj^, and (the three 

PO bonds) and ^ is the magnitude of the component of the rotating 

moment perpendicular to the k'^ rotational axis. The proper substitu-

/~2 
tions can be made in the above equation to give: ^ ~ 

* 1 2  3  

V [3(PO-CO COS 60°)cos 66°]^ + 3(C0 sin 60°)^ . Solution of this 

equation for the PO moment gives values of 0.98 D and 0.18 D directed 

towards oxygen. The first value corresponds to a molecular moment 

directed on the average from the phosphorus atom towards the methoxyl 

groups and the second to a moment in the opposite direction. A P-0 

moment of 1.2 D directed towards oxygen has been used by Russian workers, 

as pointed out earlier, and others (67, 69, 133) when treating noncyclic 

derivatives. This number differs from that calculated above because 

Lewis and Smyth (67) used triphenyIphosphite with a moment of 2.02 D, 

an oxygen valency angle of 110°, a phosphorus valency angle of 100° and 

an OCH^ group moment of 1.0 D towards oxygen in order to calculate it. 

They used an equation derived by Eyring (134) for a molecule with freely 

rotating phenyl groups but the above equation yields the same P-0 moment 

when these same data are used. These authors did not mention the second 
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value of the P-0 moment that is possible but did point out that 1.2 D is 

the difference between the H-0 and H-P moments, both directed away from 

hydrogen; the similarity between a Y-Z moment and the difference between 

H-Y and H-Z moments had earlier been empirically established (135). It 

is noteworthy that the value of 1.0 D can be used to calculate the moments 

of trimethyl phosphate (CIII) and trimethyl phosphite borane (CII) to 

within 0.2 D of the experimental values (Table 8) if the data assumed for 

trimethyl phosphite, the P-BH^ and P=0 moments listed above and a free-

rotation model are employed. Use of the value of 0.18 D for the P-0 

moment gives molecular moments that are 0.7 D and 1.1 D, respectively, 

greater than the experimental values. Either value of the P-0 moment 

could also conceivably be derived from a model with no rotation or one 

with less than completely free rotation. As noted earlier there is 

considerable infrared evidence for rotational isomerism for trimethyl 

phosphate in many solvents. Also, Brown et al. (119) found that the 

moment of triethy1 phosphite decreased 0.22 D from 25° to 35° in dioxane 

whereas that of the bicyclic phosphite XCVII(CHg) varied only 0.02 D. 

In the gas phase, an electron diffraction study of triethy1 phosphite 

revealed the presence of rotational isomers (60). Thus, a model with 

partially restricted rotation seems most reasonable. The fact that the 

moments of trimethylphosphite and its oxo and borane derivatives can be 

calculated with the same value of the P-0 moment may be due to similar 

stereochemical preferences among these molecules or to chance. Franklin 

(136) calculated the moments of twelve central-atom molecules, e.g., 

(C2Hg0)gSiH, (01082)^0 and (C2HgO)2PO, using the free-rotation model and 

found no agreement with experimental values. The error for trie thy 1-
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phosphate was only 0.2 D but differences of 1 D were more typical. He 

pointed out that dipole-dipole and steric interactions would tend to ex­

clude conformations with large moments, in agreement with the fact that 

most of the observed values were lower than the calculated values. 

Svirbely and Lander (68) found good agreement between the experimental 

mcanent of trie thy Iphosphate and the moment calculated for a free-rotation 

model. However, their method of calculation was incorrect because the 

root mean square average of the rotating ethoxyl bond moments was calcu­

lated first and then added vectorially to the P=0 and PO^ moments; the 

ethoxyl contribution was considered to be parallel to the P=0 bond on 

the average. This procedure is not equivalent to that described earlier 

for trimethylphosphite. 

A P-0 moment of 1.0 D towards oxygen has been used to calculate the 

moments of the monocyclic compounds in order to arrive at the values 

listed in Table 7 under "Calculated Mcment 1." About the only justifica­

tions for these calculations are the possibilities that the weighted root 

mean square average moment of the conformers that do exist for trimethyl­

phosphite approximates the free rotation average and that the directions 

and the magnitudes of the P-0 and C-0 moments are independent of rotation 

about the P-0 and C-0 bonds. These are admittedly relatively poor assump­

tions, but since many workers have used values for the P-0 moment of 

1.2-1.4 D to calculate moments of molecules in which rotation was 

considered to be both restricted and free, the results are being presented 

and will be discussed later. The molecular moments have been calculated 

for the structures at the top of Table 7. The structures differ in the 

axial and equatorial disposition of the exocyclic groups. All of these 
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groups were assumed to be freely rotating about the bond connnecting them 

to a ring atom. Thus, the method used to calculate the moment of tri-

methylphosphite was used here also. All of the bond moments were first 

resolved into fixed and rotating components. Secondly, the fixed com­

ponents were resolved into x, y and z components according to the 

Cartesian coordinate system show below. The xz plane is the symmetry 
* Z  tY 

R(Y) 

plane of the ring atoms, and the axial bond at phosphorus is the z-axis. 

Thirdly, these x, y and z components were added to give and 

Finally the molecular moment, H was written as the square root of 
mol 

the sum of the squares of the magnitudes of these component sums and 

each independently rotating component. If two components were rotating 

about the same axis with a constant angle between them, which was not the 

case in these calculations, they would first be vectorially added before 

being squared. Now W-^^f^^^rotl^^ + ̂ ^rot2^^ + ... + 

+ if there were k independently-rotating 

components. The bond moment components for the two structures in Table 7 

are listed in Table 10. These were determined fron the bond mmnents and 

structural data given earlier. The components of both the two ring P-0 
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Table 10. Bond moment components for l-phospha-2,6-dioxacvclohexanes 

( i )  

Bonds 

Components, D 

Bond 
Moment, D 

Structiire(i) 
X Z 

Structure (ii) 
X Z Rot. 

2 C-0 (ring) 1.16 -2.23 -0.64 -2.28 . 0.40 
C-0 (exo) 1.16 0.00 -0.58 0.52 0.23 1.00 
C-Cl (ax) 1.86 0.00 -0.63 -0.29 -0.57 1.75 
C-Cl (eq) 1.86 0.60 0.21 0.63 -0.08 1.75 

C-Br or C-I (ax) 1.6 0.00 -0.54 -0.25 -0.49 1.50 
C-Br or C-I (eq) 1.6 0.52 0.18 0.54 -0.07 1.50 
C-P (R) 1.0 0.00 -1.0 0.91 0.41 

P-Br (R) , 0.39 0.00 0.36 -0.33 -0.15 
2 P-0 (ring)" 1.0 1.12 -0.41 0.83 -0.85 
2 0-P (ring) 0.6 -0.67 0.25 -0.50 0.51 
P-0 (exo) 1.0 0.00 1.00 -0.90 -0.40 
P=0 (Y) 2.95 -2.70 -1.20 0.00 2.95 
P-BH (Y) 4.45 -4.06 -1.81 0.00 4.45 
P=S XY) 2.62 -2.40 -1.07 0.00 2.62 

^All y components are zero. 

^Exo = exocyclic, ax = axial, eq = equatorial, R = R group at 
phosphorus, Y = Y group at phosphorus. 

c 
Rot. = rotating component. 

^The two ring bond moments have been added. 
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and thç two ring C-0 moments were added because in each case the y 

components cancel and the x or z components are equal. All of the other 

7 components in Table 10 are also zero. 

The second value for the ring P-0 moment of 0.6 D towards phosphorus 

has been derived by two groups of workers from a consideration of the 

moment of the bicyclic phosphite XCVII(CH^) (120, 137). This molecule 

would seem to be an ideal model because its stereochemistry is fixed. 

The molecular moment, bond angles from the solid-state structure of 

the corresponding phosphate XCIXCCH^) (58) and C-0 and C-H moments given 

above can be used in the following equation for the molecular mcment to 

obtain the P-0 moment: 4.15 = 3(C-0) + 3(P-0) cos 66°. The molecular 

moment has the same direction as the C-0 moments because the difference 

between the moments of the phosphate and phosphite, taken in the same 

direction, is 2.95 D and is in the range of P=0 moments surveyed by Estok 

and Wendlandt, 2.5 - 3.5 D (121). A phosphite moment in the opposite 

direction would give a P=0 moment of 11.25 D. The large phosphate moment 

of 7.10 D is certainly directed towards the phosphoryl oxygen and, 

consequently, the phosphite moment is directed towards the phosphorus 

lone pair of electrons. Surprisingly, the P-0 moment is directed towards 

phosphorus, contrary to the electronegativities of the two atoms. The 

explanation of this result and a discussion of the calculated molecular 

moments based on this value of the P-0 moment must be deferred until the 

C-0 and P-0 moments have been more fully discussed. 

The C-0 and P-0 moments are difficult to determine because they vary 

as the lone pairs of electrons rotate about the bonds. These moments can 

be arbitrarily resolved into two and three component vectors, respectively. 
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In each case there is a component parallel to the bond which includes all 

of the electrons and protons contributing to the bond moment except the 

valence shell nocbonding electrons and an equal number of protons. This 

component will be called the constant part, e.g., The second 

component of the C-0 moment is due to the oxygen lone pairs. It has the 

direction of the vector sum of the two oxygen lone-pair moments and has 

one-half of its magnitude. Thus, it bisects the POC or COC angle, de­

pending on the second atom bonded to oxygen, and lies in the POC or COC 

plane, respectively. This component will be called 1/2 0^^. In the 

case of the P-0 mmnent, there is not only a 1/2 0^^ component but also 

a 1/3 P^^ component due to the phosphorus lone-pair. This latter com­

ponent has the same direction as the phosphorus lone-pair with respect 

to the phosphorus nucleus and has a magnitude one-third of that of 

the lone-pair moment. These several components are pictured below. 

,var 

Ovar 
The lengths of the vectors and the direction of P-0 ^ and 0-C ^ are un-

est est 

known and are arbitrarily shown. The phosphorus lone-pair orbital is be­

lieved to be directed, i.e., not centered on the phosphorus nucleus, be­

cause XPY, XPO and YPO angles are usually greater than 90° but less than 

120°. Thus, P should not be zero. Likewise, 0 should be nonzero; 
var var 

however, a POC angle of 120° indicates possible sp^ hybridization of the 
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oxygen valence orbitals and one of tiie oxygen lone pairs would then be in 

a p orbital perpendicular to the POC plane. Since the C-0 and P-0 

moments are sums of two or three nonparallei vectors, these moments are 

not parallel to the respective bonds. An exception might exist if 

1/3 and 1/2 0^^ are of equal magnitude and antiparallel. More 

importantly, 0 can rotate about 0-C ^ and 0 and P can rotate 
•" var est var var 

independently about P-0 . Examples of this are shown below. The 

magnitude of the C-0 moment will not change with rotation but the direction 

will. The P-0 moment not only will change in direction but also in 

magnitude. The changes that occur in either the C-0 or P-0 moment will 

depend on the magnitudes of 0 or 0 and P , respectively. The 
® var var var 

orientation shown in B above corresponds to that in the bicyclic phosphite 

XCVII(CHg). In this orientation the variable vectors add to give the 

greatest total possible; consequently, the P-0 moment will probably have 

its maximum value. The conclusion that the P-0 moment is directed to­

wards phosphorus (120) is a consequence of the invalid assumption that the 

bond moment is parallel to the bond. This can be understood by consider­

ing the drawing below. Here, the POC plane lies in the xz plane and the 

z axis is coincident with the P vector. The P-0 mcmient is shown on 
var 
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the right as the sim of 1/3 P , 1/2 0 and P-0 Now the three P-0 
° var var est 

bond moments in XCVIICCH^) will have the same magnitude and each will 

lie in its respective POC plane. Due to the symmetry of the molecule, 

the X and y components of the three P-0 moments will exactly cancel. The 

z components will not cancel and will reinforce the C-0 moments if the 

P-0 moments are directed above the xy plane, as the moment in the drawing 

is. If the P-0 moments were assumed to be parallel to the bonds, they 

would have to be directed towards phosphorus in order to reinforce the 

C-0 moments. Clearly, the P-0 mcanent in the drawing is directed towards 

oxygen and would be unless it made an angle greater than 66° with the 

xy plane. Any P-0 moments between 0° and 66° above this plane and of 

the proper magnitude could add to the C-0 moments to give a molecular 

moment of 4.15 D. In reality, therefore, the P-0 moment may be directed 

towards oxygen. 

The moments listed in Table 7 under "Calculated Moment 2" were de­

termined in the same manner as those under "Calculated Moment 1" except 

that the ring P-0 moments were given a value of 0.6 D towards phosphorus. 

The exocyclic P-0 mcment was not changed from 1.0 D towards oxygen. 

This procedure is not entirely satisfactory because the 0.6 D moment is 

an effective P-0 moment for a :P(OC)g group with a stereochemistry like 
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that in the bicyclic phosphite. A useful way to classify this stereo­

chemistry is in terms of the dihedral angle between 0 and P or the 
•' var var 

P:Y bond which is 0° in XCVII(CHg). If this moment is to be used to 

calculate moments of the monocyclic molecules, the dihedral angles 

should be 0°. In fact, they are about as shown below in the Newman pro­

jections along one of the ring P-0 bonds of structures (i) and (ii), re­

spectively (Table 10); P^^^ and the P-Y bond are parallel. The P-0 

99' 

'ar 

(i) (ii) 
moment for structure (i) should be near the maximum but that for structure 

(ii) should be less because the P and 0 moments are more in opposi-
var var 

tion. Since 99° is close to the average of 90° for free rotation about 

the P-0 bond, a value of 1.0 D towards oxygen may be more appropriate 

for structure (ii). Of course, 1.0 D is probably not correct for free 

rotation, but the error is unknown. Given the assumption that the exo-

cyclic groups in the monocyclic compounds are freely rotating, the 

molecular moments under "Calculated Moment 2" are probably better approxi­

mations than those under "Calculated Moment 1" for structure (i) and vice 

versa for structure (ii). Predictions of the stereochemistry of the mono-



www.manaraa.com

92 

cyclic compounds will be made after the nmr and infrared evidence has 

been presented. 

Thus far, the fact that P-0 and C-0 moments change with rotation 

of substituents about the bonds has been discussed and an attempt has 

been made to calculate molecular moments using P-0 moments appropriate 

to the stereochemistry. However, the calculations were carried out 

assuming that the C-0 and P-0 moments are parallel to the bonds. As a 

result, at least one additional error remains which can be illustrated 

by the following example. In the drawing below, cases A and B correspond 

to two different relative orientations of two 1/2 0 vectors. The 
var 

1/2 Ovap 

oiC O 
1/2 cÇ, ar 

1 /20  -

ye 

o-clst 

o 

1/2C^ar 

O-Ccst O-Ccst 

B 
1 2  1  2  

vector-sum 0-C _ + 0-C _ + 1/2 0 + 1/2 0 has a magnitude of 
est est var var 

(2 0-C + (0 - 2(2 0-C .)(0 ̂  ) cos 6 in case A and 
^ est var est var 

cosS-2 (2 0-C^^^) (0^^) cos 8 in case B and 

and has a different direction in the two cases. However, a summation 

with C-0 bond moments assumed parallel to the bonds would give the same 

result in both cases. Thus, knowledge of the magnitudes of O-C^^^, 

0-P , 0 and P would allow calculation of more accurate bond 
est* var var 



www.manaraa.com

93 

moments and, consequently, more accurate molecular moments. 

An empirical approach to the determination of the components of 

the C-0 and P-0 moments would require the existence of four molecules 

that contain the C-0 and P-0 bonds. The molecular moments would be ex­

pressed in terms of the four unknown component moments and the resulting 

set of equations would be solved for the unknowns. However, these 

equations must be independent. That is, the spatial relationship of the 

unknown vectors must be different in the four molecules in order for a 

solution to be possible. In fact, rotation about the P-0 bond in a 

:POC group does not change the spatial relationship of the 0^^ 

and P-O^g^ vectors. Their vector sum changes direction but not magni­

tude. The orientation of P with respect to this vector sum, POC , 
var ' var 

does change with rotation, however. The unknowns then become the angle 6 

and the magnitudes of P and POC as shown below. The POC vector 
var var var 

Svar 
T POCvar 

Y- ^ 

C 
lies in the POC plane. Molecules for which moments might be written in 

terms of these unknowns are shown next. The bonding in these molecules 

is considered similar enough that the unknowns have the same value in 

all four. Evidence to be presented later indicates qualitatively that 

there are differences in bonding but the effect of these differences on 

charge distribution cannot presently be evaluated. The unknown stereo-
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pCH3 

;p(-OCH3 

\x:H3  ̂

••F 

CI XCVlKCHg) 

(j)CH3 

(i) (ii) 
chemistry of CI has already been discussed. Evidence in addition to that 

given in the Review of Literature will be presented later for the axial 

disposition of the methoxyl group in a chair conformation as the most 

stable conformation of monocyclic derivatives such as XXXIV, XXXII A and 

XXIX. Also, the moment of a phosphite isomer (XXXII B) in which the 

methoxyl group at phosphorus is believed to be equatorial is available. 

In none of these cyclic compounds is the orientation of the methoxyl 

group with respect to rotation around the OP bond known. Ideally, the 

stereochemistry of these molecules should be completely defined before 

the unknown moments are determined. Much less satisfactorily, assumptions 

of the stereochemistry can be varied until three molecular mcanent equa­

tions are consistent. 'Consistency" in this context means that no matter 

which two equations are solved for one unknown in terms of one of the 

others, the same equation results. This definition will be made clearer 

shortly. The problem with this method is that an infinite number of 
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stereochemical possibilities exist and it is never certain that more than 

one combination of stereochemical assumptions will not give a consistent 

set of equations. Da fact, it may not be possible to find one satis­

factory combination without a great deal of trial and error. As a re­

sult, either an independent method of determining 9 and the magnitudes 

of POC and P should be found, or the stereochemistry of these 
var var 

compounds should be determined by some other means. Sane progress in 

the determination of the stereochemistry will be described later, but 

no attempt has been made to implement the first suggestion. 

Expressions for the molecular moments of CI, structures (i) and 

(ii) (R = OCHg, Table 7) and XCVII(CHg) in terms of 0 and the magnitudes 

of POC and P have been written and analyzed to test the possibility 
var var 

that rotation is free in CI and monocyclic trialkyl phosphites like XXXIV, 

XXXII A and XXXII B. The expression for the bicyclic phosphite is 

given in Equation 12 along with the necessary structural assumptions. 

Similarly, Equations 13-15 correspond to trimethylphosphite, structure 

(i) and structure (ii), respectively. These last three equations were de­

rived in the same way as those of the moments in Table 7. The coordinate 

system was oriented as previously shown (p. 85 ) for structure (i) but was 

C 
4.15 = P^^ + 3(P0C)cos(e-65) (12) 
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POC 

i 
(1.83)2 =[P + 3(P0C)cos0 cos 66]^ + 3C(P0C)sin 0]^ 

var 
(13) 

POC 

(2.93) = [-P cos 24° + P0C(-1.13 cos 9 - 1.61 sin 0)]' 
var 

+ C-P^^ sin 24° - POC cos 0 + POC (.414 cos 0 - .724 sin 0)]' 

+ [POC sin 0]^ (14) 
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(3.6)^= C-P^g^sin 26°+ POC cos G cos 50°+ P0C(-1.13 cos G-1.61sjn 8)]^ 

+ Cp^^cos 26°+ POC cos 6sin 50°+ POC(.414 cos 6-.724 sin 8)]^ 

+ [POC sin ef (15) 

rotated 26° clockwise for structure (ii). The molecular moment of 2.93 D 

for structure (i) is an average of those of XXXIV(2.82 D) and XXXII A 

(3.04 D). The ring atomic unit cell positions given in reference 33 for 

L were used to determine the x and z components of the ring POC vectors. 

The ring of L was first translated and rotated so that the coordinate 

system was oriented as described above. Then equations were written 

for one of the ring POC planes and cosines of two angles defined by the 

P-0 bond and adjacent POC vector and the POC vector and adjacent O-C bond. 

These equations were combined and solved for the direction cosines of 

the POC vector and finally for the x and z components in terms of 9 and 

the magnitude of POC. If Equation 12 is solved for P^^ in terms of 9 

and POC and this expression for P^^ substituted in Equation 13, POC can 

be expressed in terms of 9 as (1.09 + 0.400i)/sin 8. This result was 

checked by substituting it into Equation 13, solving for P^^ in terms 

of 0, substituting the expressions for POC and P^^ into Equation 12 and 

finding an equality. The above procedure was followed with Equations 12 

and 14 and 12 and 15 and POC was found to be (2.08 + 0.450i)/sin 9 and 

(0.987 + .770)/sin 0, respectively. Thus, the three pairs of equations 

do not yield the same value of POC as a function of 0 and, in this sense, 

the four equations are not consistent. That is, the assumptions made to 

derive one or more of the equations are not all correct. The pairs of 

Equations 12 and 13 and 12 and 14 yield imaginary values of POC, due most 
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likely to restricted rotation of the methoxyl groups in CI and structure 

(i). Even if the C-H moments in XCVIICCH^) and CI are assumed to be 

0.4 D towards carbon instead of 0.0 D, combination of the modified 

Equations 12 and 13 gives a POC magnitude of (0.730 + 0.396i)/sin 9, 

still imaginary. A real value of POC is obtained when Equations 12 and 

15 are cosibined but this is not proof that the methoxyl group in 

structure (ii) is freely rotating. If Equations 13 and 14 are written 

assuming that the methoxyl groups are all fixed with a P^^, ®var 

dihedral angle of 180°, Equations 16 and 17, respectively, result. 

+ 1.83 =3 cos (114-6) POC-P (16) 
— ^ ' V3X 

(2.93)2= 24°+POC sin 8-P0C(1.13 cos 9 + 1.61 sin8)f 

+ [-P sin 24 - POC cos 9 + POC (.414 cos 9 -.724 sin 9)]^ 

(17) 

Equations 12 and 16 and Equations 12 and 17 can then be combined to give 

values of POC of 1.09/sin 8 or 0.425/sin 8 and (2.12 + i.46)/sin 8, 

respectively. These solutions are also real but are not the same for the 

two pairs. This illustrates the difficulty mentioned earlier of finding 

a consistent set of equations which might possibly be indicative of the 

correct molecular stereochemistries. It may be necessary to express one 

or more of the molecular moments as a weighted average of those of 

several conformers. 
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B. Methods of Analysis of Spectra 

The purpose of this section Is to describe the methods of analysis 

of the commonly-encountered nmr spectra. The primary reference is the 

book by Pople, et al. (138, pp. 132-51). Deceptively simple spectra are 

discussed by Abraham and Bernstein (139). The phosphorus nucleus and 

the OCH^ protons of a chair or boat conformation of a l-phospha-2, 6-

dioxacyclohexane comprise an AA'bb'x spin system. The nuclei are 

labeled in the structure below. In the following analysis, nuclei of 

r, r', r" and Y are assumed to couple negligibly to the methylene protons. 

In practice, nuclei in r and Y apparently do not couple and any other 

couplings greater than a few tenths of a Hertz can be eliminated by 

saturating the responsible nuclei in r' and r". The difference in 

chemical shift of X and any of A, A% B and b' is termed (frequency 

units), for example, and is very great compared to any spin-spin couplings 

between X and the other nuclei. The A and A'nuclei have the same chemi­

cal shift relative to tetramethylsilane, , as do also the 

B and B' nuclei. This is due to the apparent molecular plane of 

symmetry passing through P^, and the exocyclic bonds to these atoms. 

The A and A* nuclei, or B and B% are different because A and a' do not 

generally couple equally to B and Bi.e., J^/g and ^ "^a'b' * 
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The AÂ 'bb ' part of the spectrum can be analyzed as the AB part of an 

ABX spectrum if all couplings between primed and unprimed nuclei, e.g., 

J / and J._/ , are small relative to J._ (= J./_/) and v._. In 
AA. AB AB A B AB 

this case, the AB pair does not couple appreciably to the a'b' pair 

and both give the same spectrum. The ABX approximation has been used in 

the analysis of many of the spectra. The X parts of the spectra usually 

were not obtained or were poorly resolved; therefore, they are not 

discussed in this section. The AB part of an ABX spectrum contains 

eight lines and is illustrated in Figure 1. The spacings between lines 

1, 3; 2, 4; 5, 7; and 6, 8 are equal to The parameters 2 D ̂  and 

2 0 are defined below. Lines 1, 3, 5, 7 and 2, 4, 6, 8 comprise two 

% 
(j„ - + J./ ( 

cos2«^= [v 

^•>1= i i "ax - + V] 

AB 

symmetrical but not generally identical quartets. The separation of the 

quartet centers is (J^ + and the average of the centers is 

Y + Vg). When lines of each of the sets 2, 1, 7, 8 and 4, 3, 5, 6 are 

apparently of the same intensity, two quartet assignments are possible. 

In these cases, the spectral parameters were determined for both assign­

ments. In some instances, the correct assignment was determined by noting 

which pair of values of 2D^ and 2D_ could be used to calculate the AB 

part of the spectrum observed when a different external field was applied. 

In other instances, unreasonable values of and were obtained from 
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Figure 1. The AB part; of an ABX spectrum 
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one quartet assignment, i.e., one or both were very large or they were 

of opposite sign (see Section IV. J.l ). For each quartet assignment, 2D_j_ 

and 2D_ cannot be distinguished and only the magnitudes of (D^, D_), 

(J^y + Jg^), J^, and (v^ 4- Vg) can be determined. Two magnitudes of 

\b — 2 ~ y, can be found from J^, D_j_ and D_. Then, 

two sets of magnitudes of and (J^ - can be deduced as follows: 

"AB ° 2 + y) •'ax - -^BX ° - y 

"AB ° i (» - y) •'AX " •'BX ° + y 

The correct set was determined by using the magnitudes of (J^ -

and (J^y + Jg^) to calculate two pairs of and Almost always, 

one pair was unreasonable by the criteria noted above. In a few in­

stances, the correct pair was determined by noting which could be used 

to calculate the spectrum observed at another external field. 

Scamp les of two deceptively-simple methylene proton resonances are 

shown in Figure 2. In these spectra, one or both of the quartets have 

apparently collapsed to a single line. The outer lines of each collapsed 

quartet seemingly have zero intensity. In general, the separation of 

the innner lines of a quartet is: 

r  % 
«+ - -"AB - = •'AB - pAB i f "AX - •'Bx)]' + 'u] • 

If + 1^ (J^y - , then the above equation can be rear­

ranged to give: 

Yh. = CW+̂  ± 2W+  ̂. 
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Figure 2. Two deceptively-s impie methylene rnnr resonances 

a. The expanded methylene resonance of 1-hydro-l-oxo-^ 
4,4-dimethyl-l-pho8pha-2,6-dioxacyclohexane (XXXIV ) 
in C,H, (I.IM). The intense apparent singlet at the 

D O 
left has been compressed by Insertion of the top 
portion in the lower portion. 
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5. 
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Figure 2 (continued) 

b. The spectrum of XXXIV in CCI, (0.070 M). The 
methylene (CH^) resonance consists of two 

apparently-s ingle lines. The low-field half 
of the PB-proton resonance is not shown. 
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The sum or difference applies to both and Y_, but, in the cases to 

be dealt with here, one root is imaginary. If W^and W_ were exactly 

zero, then ^ (J^ - = 0 and two collapsed quartets would be 

observed. If W_j_ or W_ were exactly zero, then or Y_, respectively, 

equals zero and one collapsed quartet would be observed. However, the 

ability to determine whether a quartet has collapsed is dependent on the 

resolving power of the spectrometer. In practice, y^, v^, and 

have large uncertainties when one of these deceptively simple spectra 

is encountered. For example, if in the two-line case, i.e., two col­

lapsed quartets, = 0.3 Hz, = -11 and y^ is arbitrarily made zero, 

then Y^ = 2.6 and (J^ - =5.2. The intensity of the outer lines of 

the quartets would be 1.3% of the intensity of the inner lines. The 

assumption that the quartets are completely collapsed would lead to 

- Jg^) =0. If, in the five-line case, i.e., one apparently col­

lapsed quartet, W_ = 0.3, = -11, = 10 and = 24, then 

Y_ = 2.6, = 19.4 and = 4.6. The intensity of the outer lines 

of the "collapsed" quartet would be the same as in the previous case. If 

W_ had been zero, then = 22.0 and = 2.0. Since the quality of 

many of the spectra does not allow distinction of lines closer than 

about 0.5 Hz, the determination of and must be considered highly 

uncertain when a seemingly collapsed quartet is encountered. Abraham 

and Bernstein (139) have pointed out that, under circumstances similar to 

those encountered here, the width at half height (W^^) of the component 

lines of the quartet will limit the certainty of the analysis. This half-

width was seldom less than 1 Hz. If the central line of a seemingly 

collapsed quartet had = 1.3 and the components of a second noncollapsed 
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quartet In the same spectrum had = 1.0, then W should be 0.3 and an 

approximate analysis should be possible. Unfortunately, the uncertainty 

in the half-width difference is probably no less than 0.2. Also un­

certain is the effect of long-range couplings on the width of the 

apparent single line and these interactions have not been taken into 

account in this ABX analysis. The values of and can be de­

termined if a change of conditions changes but not and 

However, the latter condition does not hold for many of the substituted 

l-oxo-l-phospha-2,6-dioxacyclohexanes. Therefore, (J^ + J^y), but 

not and separately, can be accurately found from one of the 

above deceptively-single spectra. 

Many of the methylene proton resonances contain lines in addition 

to those expected for an ABX spin system; examples appear in Figures 2, 

4 and 9. These are due to long-range HCCCH couplings. If is at 

least several times greater than the spectrum can be analyzed 

using an AA'kk'x approximation. The AA' part of an AA'kk'x 

spectrum is shown in Figure 3. For this spectrum: / = 1, 

= 2, = -10, = 5, and J^/ = 0. The AA' and KK' parts 

are symmetrical about their centers. The only difference between the 

two parts is the spacing and J^. Two pairs of identical sets of 

peaks can be found in each part. The two sets in each pair are separated 

by or J^. The splittings + J^/) and (J^/ - J^/ ) cannot 

be distinguished from the spectrum. The separations 5-7, 6-8 are 

+ "ak - 9-11. w-12 C"AA' " + 

2 % ^ g 
] . Thus, from the line positions in the AA KK' part, the 
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Figure 3. The AA' part of an AA'kk'x spectrum 
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magnitudes of all the coupling constants can be determined. However, 

J / cannot be distinguished from nor J. from J / . In the 
AA KK AK AK 

molecules that were studied, is expected to be much larger than 

As decreases, the spectrum becomes the Aa'bb'x type and 

is extremely difficult to analyze for all of the parameters by hand 

calculations. Since the long-range couplings are not expected to be 

greater than 3 Hz many spectra of this type were analyzed using the ABX 

approximation. The extra lines could usually be identified and were 

ignored. In these cases, the long-range couplings could, of course, not 

be determined. Â few of these same spectra were analyzed as Aa'bb'x 

spectra using the lAOCN 3 iterative least-squares computer program of 

Castellano, et al. (140). Trial coupling constants and chemical shifts 

were first used to calculate line positions. Then, the parameters were 

varied iteratively until the calculated line positions converged as 

closely as possible to those observed. The differences in the parameters 

as determined by the two methods were less than 1 Hz. 

The spectrum of CV is an AA'bb'mX type and was analyzed with the aid 

of lAOCN 3. Discussion of the analysis of this spectrum,, others not fre­

quently encountered and those of the types discussed above appear through­

out the remainder of this dissertation. 

C. Description and Analysis of ^H NMR Spectra of 
1-R- 1-phospha- 2,6-d ioxacyc lohexanes 

1. l-R-4.4- dimethyl- l-phospha-2,6- dioxacvc lohexanes 

The ̂  nmr spectra of the coiiq>ounds in Table 2 having = CH^ 

(except XXXV) have several common features which are exemplified in 

Figure 4a, the spectrum of the chloro derivative XXXVIII. In all cases. 
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Figure 4. The H nmr spectrum of l-chloro-4,4-dimethyl-l-phospha-2,6-dioxacyclohexane 

a. The ring-methylene proton resonance and the two 4-methyl resonances. 
The widths at half height (W.,.) are shown for the expanded latter 
two resonances. 

b. The ring-methlene proton resonance when the protons giving the 
broader methyl resonance are decoupled. 
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the two methyl resonances are separated by at least 0.42 ppm and the one 

at lower field is broader. The methylene resonaiice consisting of two non-

overlapping halves appears at still lower fields. The low-field half is 

distinguished by its broadness relative to the high-field half which 

consists of sharp unsymmetrical triplets. When the protons associated 

with the broader methyl resonance are decoupled from the methylene protons 

a spectrum similar to that shown in Figure 4b results. The sharp un­

symmetr ical triplets are now evident in both halves of the methylene re­

sonance. Decoupling of both methyl groups gives a methylene resonance 

essentially the same as in Figure 4b. 

Gagnaire, et al. recently reported the analyses of the nmr spectra 

of XXIV, XXIX, XXXV, XXXVI, 2D5XVIII and XLVI (29, 30). For XXIV, XXIX, 

XXXVI and XXXVIII, irradiation of the broader methyl proton resonance 

led to a methylene resonance which was treated as the superposition of 

two sub spectra, one corresponding to the or spin state of phosphorus and 

the other to the g spin state. Because the chemical shift between the 

high-field AA' and low-field KK' methylene protons is large relative to 

the couplings of the protons to phosphorus, these AA'kk' subspectra are 

practically identical and, as a result, the relative signs of J(POCH^) and 

J(POCH^) could not be determined; however, their magnitudes could be 

found (Figure 3). Also, the magnitudes of J(H^H^/) + J(H^H^/) (apparently 

equal to J(H^H^/) - J(H^^/)) and J(H^H^) + J(H^H^/) could be determined 

(Figure 3). The magnitudes of J(H^H^/) could not be de­

termined with much accuracy because the components of the triplets (Figure 

13 
4b) were spaced too closely. However, examination of the C satellites 

13 
from C in natural abundance revealed that J(H^^I^/), J(H^H^/) and J(H^f 
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were practically zero. The spectra of XXXV and XLVI differ from the 

others because the chemical shift between AA' and Kk' is considerably 

smaller. Comparison of spectra at 100 and 60 hHz allowed them to 

conclude that the coupling constants between the methylene protons and 

phosphorus are of the same sign. In addition, the similarity of the 

magnitude of the coupling constants of the others to those of XLVI led 

them to assume that all are of the same sign. 

The parameters found by Gagnaire, et al. refer either to solutions 

in CSg (XLVI) or at infinite dilution in CCl^. Spectra of XXV (neat), 

XXXVIII (neat) and XLVI (CgH^) have been obtained with the methyl 

protons decoupled and have been analyzed as âà'bb'x spectra with the 

aid of the lAOCN 3 program to determine if the parameters differ from 

2 
those found under different conditions. Final parameters, degree of 

convergence and other pertinent information have been collected in 

Table 11; also included are results of spectral analysis of other com­

pounds that will be discussed later. The accuracy of the magnitudes of 

J(H^H^/) and J(HgHg/) may not be very great because they were determined 

assuming that the outer components of the triplets (Figure 4b) are 

single lines and, although this appears to be the case, the small intra-

triplet spacing of about 1.5 Hz makes any splitting difficult to observe. 

The good agreement between calculated triplet line-intensity ratios and 

observed line-height ratios, e.g., 3% error for XXV, suggests that the 

outer lines are single. The larger long-range coupling J(HCCCH) is 

2 
Analysis of the spectra of XXV and XXXVIII was performed by Bertrand 

(99d). 
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Table 11. Results of spectral analysis of some 1-R-l-phospha-2,6-dioxacyclo-
hexanes and 2.6.7-trloxa-l-pho8phabtcvclo l2.2.l] heptane (CV) 

(r)c-)p 
ReCM) 

Chemical ^ 
Shifts,Hz Coupling Constants, Hz 

\ 
Cmpd. Solvent ^a' ^b' "^AA' "^a'b' "^a'x "^b'x "^MX^ 

XXV^ ^ 189.19 249.42 2.89 -10.46 10.68 3.00 
(0.02) (0.02) (0.03) (0.03) (0.04) (0.04) 

XXX A^ CDCl^ 232 254 <2.0 -10.6 11.0 2.89 

XXX CDClgk 235 264 < 2.0 -11.6 8.40 5.03 

XXXVIIl^ ^ 211.59 257.48 2.79 -10.80 11.16 5.73 
(0.015) (0.015) (0.025) (0.02) (0.03) (0.03) 

dumber in parentheses is probable error in Hz. Probable errors for 
XXX A, B and XL A < 1.0 Hz (25). 

^Assumed positive. 

^Assumed negative (141, pp. 172-4). 

^Assumed positive (31). 

Assumed positive (141, pp. 172-4). (Footnotes continued next page) 



www.manaraa.com

113 

Coupling ^ 
Constants, Hz 

«^A'M 

CV 
RMS Max 
Error Error Peaks Transitions 

„ Observed Transitions Used For 
Calcd. Iteration 

3.71 11.9 

4.90 4.65 

0.144 0.29 19 58 58 

0.094 0.27 21 48 48 
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Table 11 (continued) 

Chemical ^ 
Shifts, Hz Coupling Constants, Hz 

«A ^B V 

Cmpd. Solvent ®A' ^B' ^A-B- ^A'X JB'X V 

XL A^ CDClgk 255 274 < 2.0 -10.9 11.3 5.24 

XLVI^ <=6^ 197.29 
(0.02) 

215.65 
(0.02) 

2.51 
(0.04) 

-10.59 
(0.03) 

10.02 
(0.04) 

2.85 
(0.04) 

CV^'= i 
211.63 225.66 3.40 

(0.01) 
-8.12 
(0.01) 

0.29 
(0.015) 

3.83 
(0.014) 

15.90 
(0.015) 

n 
CCI, +3.5 —8.2 0.4 3.8 15.7 

(Footnotes continued from preceding page) 

^Sweep width, Hz/cm: 0.37 for XXV and XXXVIII, 1.98 for XLVI 
0.27 ( H) and 3.8 ( P) for CV; one scan for each compound. 

^Includes shoulders. 

^XLVI approximately 1.7M; all samples 27.5°C; Varian HR 60. 

^A'B' (25)' 

^Approximately 20% solution, 35°C (25). 

'^AB' = •'A'B ' 0-35. ̂ BB' = -0-25. 

= 310.256 (0.01). 

'^lOOMHz spectrum; = 0.3; Jgg ' = +0.3 (99a). 

and 
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Coupling ^ 
Constants. Hz 

J^e J e RMS Max 
Error Error Peaks Transitions 

J y J ^ Observed® Transitions Used For 
A M B M Hz, Calcd. Iteration 

3.01 11.1 

0.120 0.32 

3.34 0.16 0.061 0.24 
(0.01) (0.01) 

3.2 0 

22 48 44 

65 128 121 
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associated with the more shielded protons (AA^) on the basis of the 

13 
C satellite spectra interpreted by Gagnaire, et al. (29, 30). The 

magnitudes of J(H^X) and J(HgX) in Table 11 differ by no more than 0.4 Hz 

from those determined by Gagnaire, et al. (30) 

The spectra of XXXVI (neat), XLIV (C^Hg) and XLVII (CDCl^, C^H^) 

were also analyzed. Since the chemical shifts between the methylene 

protons are about 0.72, 0.87, 0.70 and 0.83 ppm, respectively, analysis 

on the basis of an AA'kk^X spectrum should give parameters.correct to 

within a few tenths Hz. The lack of spectra with the methyl protons 

decoupled increases the uncertainty of J(HgX) and bromide exchange 

broadens the resonance of XLIV. Approximate values of J(H^X) and 

J(HgX) for these compounds, the more accurate values for those discussed 

above, and others to be discussed later are given in Table 12. 

2. 3.9-Dimethoxv-3.9-diphospha-2,4,8..10-tetraoxaspiro [5.5] undecane 

(CXVIII) 

The nmr spectrum of CXVIII in benzene has been obtained at 60 and 

100 MHz. • The 100 MHz resonance of the methylene protons is shown in 

Figure 5. The spectrum can be divided into four parts, labeled AA', GG% 

mm' and SSeach of which corresponds to the resonance of two protons. 

The methoxyl proton resonance is at 3.20 ppm (J(POCH) = 12.0) and is not 

shown. The methylene protons and phosphorus nuclei can be labeled as 

shown below. 
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Table 12. Values of J(POCH) for some l-R-l-phosoha-2,6-dioxacvclohexanes 

Compound R J(PHb)^ J(PH^)+J(PHg) Solvent 

XLVI (=6=5 10.2,10.0 3,2.85 13.2, 12.85 

XXIX OCHg 10.8 2.8 13.6 CCl,^ 
4 

XXX A OCH3 10.98 2.89 13.87 CDCl^'^ 

XXX B OCEg 8.40 5.03 13.43 CDCl^^ 

9.40 3.90 13.30 CS^d 

XXXII A OCH^ 2.1, 2.2+ 
0.2 

e 
neat, neat 

XXXII B OCH- 3.1+0.2 
3 6 6 

XXXI A OCH3 10.5+0.5 3.1+p.l 13.6+0.6 neatjCDCl^ 

XXXI B OCH3 10.5+0.5 3.5+0.2 14.0+0.7 neat 

XXV qtc^Hg 10.7 3.0 13.7 neat 

XXIV 10.8 2.8 13.6 CCl^ 

XLVII ^^6«5 9.5+P.2 4.3+0.3 13.8+.5 CDClj.CgHj 

XXXVI F 10.8, 10.9 2.8, 3.0 13.6, 13.9 CCl.'l neat 
+0.3 +0.5 +0.8 

4 

XXXVII A F 10.5+0.5 3.5+0.2 14.0+0.7 neat 

XXXVIII Cl 10.8, 11.2 6, 5.7 16.8, 16.9 CCl^^, neat 

XLA Cl 11.28 5.24 16.52 CDCl^^ 

^J(PH.) = J(PH./), J(PH^) = J(PEL /). AA' protons resonate at higher 
field than BB'protons. 

^No xincer taint ies were given (30). 

^Approximately 20% solution, 35*^0 (25). 

^^Approximately 20% solution, -62°C (25). 
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Table 12 (continued) 

Compound R J(PH^)^ JCPHfi)^ J(PH^)+J(PHg) Solvent 

XLI A CI 4.8 
e 

neat 

XXXDC A CI 10.5+0.5 5.7+0.2 16.240.7 neat, CgH^ 

XLV A Br 10.5+0.5 6.5+0.5 17.0+1.0 % 
XLIV Br 10.5+0.5 6.4+0.5 16.9+1.0 % 
XXXV N(CHg)2 19.6 3.8 23.4 CCl^^ 

®No uncertainties were given (31). 
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Figure 5. Ring-methlene nmr resonance of 3,9-dimethoxy-3,9 
dlpho8pha-2,4,8,10-tetraoxaspiro [5.5] undecane in 
C.H, at 100 MHz 
6 6 

Each of the four parts of the resonance correponds 
to two protons. The spectrum amplitude is not the 
same for all of the parts. 



www.manaraa.com

i«-12 

10 

gg: 
aà 

«.M 

201 

MM 
3.4# t.t7 

CHo RESONANCE 



www.manaraa.com

121 

In the following analysis, coupling constants and chemical shifts 

involving only nuclei represented by primed letters, e.g., J(^v H^/), 

are assumed to be equal to those involving the corresponding unprimed 

nuclei, e.g., unless explicitly stated otherwise. The smaller 

splittings within the G group of lines are not presently understood; 

therefore, data from this resonance were not used to calculate any 

coupling constants. The intensity perturbations in the spectrum in­

dicate that J(H^Hg) and are not negligible compared to v(H^Hg) 

and v(^^g), respectively. The splitting in common to groups A, M and 

S and qualitatively to group G is 11.1 + 0.1 Hz, which is very similar 

to the geminal coupling constant found for the l-R-4,4-dimethyl-l-phospha-

2,6-dioxacyclohexanes. Therefore, (H^, H^) and (H^, Hg) are concluded to 

be geminal pairs of protons. Splittings of 10.3 + 0.1 Hz and 2.5 + 0.1 

Hz are found in groups A and S. These correspond closely to J(POCH^) 

and J(H^CCCH^) for the phosphite XXV and are assigned as such. A 

splitting of 2.8 + 0.1 Hz occurs in group M but not in group A or S. 

This is most likely due to coupling to phosphorus because the correspond­

ing J(POCHg) in XXV is 3.00. This splitting should also occur in group 

G and does between lines 10 and 12 and lines 15 and 17. If this split­

ting were due to coupling between and H^, intensity perturbations 

would be expected in both 6 and H resonances because the ratio 

v(HgHjj):J(HgHjj) would be about 18.5, less than that for the ethyl pro­

tons of ethanol, for which intensity perturbations are observed. The in­

tensity difference between lines 19 and 20 is of opposite sign to that 

predicted and the difference between lines 21 and 22 is very small but of 

the correct sign. The perturbations are just as small in the 60 MHz 
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spectrum. Therefore, the 2.8 Hz splitting is concluded to be J(POCHg) = 

J(POC^). The couplings thus far discussed account for all the resolved 

lines in groups Â, H and S. Anderson analyzed the spectrum of 3,9-di-^-

buty 1-2,4,8,10-tetraoxaspiro [5.5] undecane, (CH^)^CCH(0CHg)2C 

CHC(CHg)^, and found an inter-ring coupling of 1.8 Hz between protons 

analogous to either G and g' or M and m' in CXVIII but not both (142). 

In the absence of this coupling, the A resonance would be a doublet 

(J(POCH^)) of doublets (J(H^Hg)) of doublets (J(H^Hg)) and the G re­

sonance would be a doublet (J(POCH )) of doublets (J(H.H )). This 
G AG 

inter-ring coupling would manifest itself as a tripleting of all the 

lines in the A and G resonances in a manner like that in Figure 4b. The 

fine structure observed in the G resonance is not apparent in the A re­

sonance. However, the A lines are broader (^2/2 ~ Hz) than the M 

(Wj^y2 ~ 1.3 Hz) or S(1.0 Hz) lines, indicating additional long-range 

coupling by the A and a' protons. In the absence of a more detailed 

analysis of this spectrum, an explanation of these additional splittings 

in the G resonance cannot be given. A summary of the tentative spectral 

parameters is given below. 

6h^ = 4.41 ppm ÔHg = 4.11 ppm ÔH^ = 3.59 ppm ÔHg = 2.80 ppm 

J(H^Hg) = J(H^g) = 11.1+0.1 Hz J(H^P) = J(HgP) = 10.3+0.1 Hz 

J(H^) = J(HgP) = 2.8+0.1 Hz J(S^Hg) = 2.5+0.1 Hz 

3. l-R-4-methvl-4-chloromethyl-l-phospha-2,6-dioxacvclohexanes 

XXXI A-B, XXXVII A-B, XXXIX A-B and XLV A-B are pairs of geometrical 

isomers with chlorous thy1 and methyl substituents at the 4-position in 

the rings (Table 2). No attempts were made to separate the A and B 
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isomers of any of these pairs. As a result, overlaps of ring methylene 

resonances exist and usually only the features due to the dominant 

isomer are evident. The exception is the pair of phosphites XXXI A, B 

which has been made in varying ratios. The methyl resonances of these 

phosphites are at 0.761 ppm (XXXI A) and 1.28 ppm (XXXI B), the chloro­

methyl resonances are at 3.80 ppm (A) and 3.27 ppm (B) and the methylene 

resonances, by approximate AA'kk'x analysis, are at 4.15 and 3.57 ppm (A) 

and 4.25 and 3.37 ppm (B). The methylene, chloromethyl and methoxyl 

resonances of A and B are shown in Figure 6. The left-hand spectrum cor­

responds to a 3.6:1.0 mixture and the right-hand spectrum to a 1.0:2.5. 

mixture of A:B. The observable part of the high-field half of the 

methylene resonance of both A and B consists of sharp triplets (J(POCH) = 

10.5 + 0.5 Hz) as in Figure 4a but the chemical shifts are uncertain 

( + 1 Hz) because of overlap with the sharp methoxyl doublet at 3.48 ppm 

(J(POCHg) = 11.9 Hz). The low-field half of the methylene resonance for 

B consists of a doublet of doublets of unresolved multiplets (J(POCH) = 

3.5 + 0.2), reminiscent of those in Figure 4a, but that for A consists of 

sharp lines (J(POCH) = 3.1 + 0.1 Hz). Expansion of the methyl resonances 

(CDClg solution) exposes a peak with = 1.02 Hz for A and a triplet 

(J(HCCCH^) = 0.7 Hz) with = 1-80 Hz for B. 

The spectral features of the major fluoro isomer XXXVII A are 

qualitatively like those of XXXI A. The methyl resonances of XXXVII A 

and B are at 0.82 and 1.33 ppm and the chloromethyl resonances are at 3.79 

and 3.26 ppm. The high-field half of the methylene resonance of A is 

centered at 3.71 ppm (J(POCH) = 10.5 + 0.5 Hz) and the low-field half at 
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Figure 6. Partial H nmr spectra of mixtures of cis 
and trans-l-methoxy-4-methyl-4-chloromethyl-
l-phospha-2,6-dioxacyclohexane 

The left- and right-hand spectra correspond 
to the methoxyl, chloromethyl and ring 
methylene resonances for 1:2.5 and 3.6:1 
isomer ratios, respectively. 
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4.17 ppm (J(POCH)= 3.5 + 0.2 Hz). Estimates of the corresponding centers 

for B, assuming the coupling constants for Â, are 3.52 and 4.32 ppm. 

The spectral features of the chloro isomers XXXIX Â, B are broadened 

somewhat by an exchange phenomenon to be discussed later. The methyl 

resonances of Â and B are at 0.87 and 1.33 ppm and the chloromethyl 

resonances are at 3.76 and 3.29 ppm. The two halves of the methylene re­

sonance of A are centered at 3.84 ppm (J(POCH) = 10-11 Hz) and 4.35 ppm 

(J(POCH) = 5.5 - 6.0 Hz) but those of the B isomer cannot be located 

accurately. 

The spectral features of the bromo isomers XLV A, B are very much 

broadened and the two methyl, two chloromethyl, etc. resonances cannot 

be distinguished. Estimates of J(POCH) for the A isomer of 10.5 + 0.5 Hz 

(high-field) and 6.5 + 0.5 Hz (low-field) can be made from a dilute 

benzene solution spectrum. 

4. l-R-3,5-dimethyl-l-phospha-2.6-dioxacyclohexanes 

Spectra of XXXII A and mixtures of XXXII A and B, derived from meso-

2,4-pentanediol, were obtained with and without benzene as a solvent. 

In the absence of benzene, the methine resonance (R^, - Table 2) for 

XXXII A is a multiplet (0.58 ppm wide) 0.35 ppm downfield from the cor­

responding resonance for XXXII B (0.58 ppm wide) that is centered at 

4.15 ppm. The methoxyl proton chemical shifts at about 3.43 ppm are 

distinct but differ by less than 0.017 ppm,with that for XXXII B at 

higher field. These protons exhibit couplings to phosphorus of 11.8 Hz 

for XXXII A and 10.8 Hz for XXXII B. The multiplet methylene resonances 

(R^, R^ - Table 2) appear at 1.40 - 1.87 ppm for XXXII A and at roughly 

1.50 - 2.33 ppm for XXXII B. The methyl resonances appear as a doublet 
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(J = 6.3 Hz) at 1.13 ppm for XXXII A and 1.22 ppm for XXXII 6. 

The methylene Rg) resonances have not been analyzed but some 

useful information has been obtained frcm the me thine (R^, R^) re­

sonances. The methylene and methine resonances for either isomer are 

sufficiently separated that the latter represents the X^ part of an 

ABXg spectrum further complicated by couplings to methyl protons and 

phosphorus. A first-order AMX^ spec trim of thirty-two lines is ex­

pected for the methine resonance if the chemical shift between the 

methylene protons is much greater than the geminal coupling constant. 

This spectrum can be considered a doublet (J(POCH^) of doublets (J(H^CCH^)) 

of doublets (J(H^CCHg)) of quartets (J(H^CCHg)). Fortuitously, only 

eighteen lines appear for XXXII B with intensities indicative of a first-

order spectrum exhibiting coupling constants of 11.2, 3.1 and 3.1 Hz 

in addition to the 6.3 Hz coupling associated with J(HCCHg). Decoupling 

of the phosphorus nucleus reduced the number of lines to sixteen and re­

vealed that J(POCH^) is 3.1 Hz and, thus, the vicinal coupling constants 

J(HCCHg) are 11.2 and 3.1 Hz. The intensities of lines in the methine 

resonance of XXXII A indicate that it is not first order and, from line 

separations, only approximate magnitudes of J(HCCH^) of 9.8 and 3.8 Hz 

can be reported. Decoupling of the phosphorus nucleus revealed a J(POCH) 

value of 2.2 Hz. No sign information for the above coupling constants 

has been obtained. Albrand, et al. (31) have independently analyzed the 

spectrum of XXXII A and found J(POCH^) = 11.7, J(POCH) = 2.1, and 

J(HCCH^) = 11.6 and 2.2 Hz for a neat sample. The methine resonance is 

indeed second order because ÔCCH^) = 0.120 ppm and J(HCH) = -13.9 Hz or 
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1.93 times greater than 5(CH^) at 60 MHz. Unfortunately, these workers 

did not analyze the spectrum of XXXII B. 

The phosphite XXXIII, derived from d,1-2,4-pentanediol. differs from 

XXXII A and XXXII B by having chemically nonequIvalent methyl groups of 

protons (R^, R^). The doublet resonances of these methyl protons appear 

at 1.43 ppm (J(HCCHg) = 6.8 Hz) and 1.20 ppm (J(HCCH^) = 6.3 Hz). Only 

spectra of mixtures of XXXIII and XXXII Â and XXXIII, XXXII A and 

XXXII B have been obtained, but one comparison is worth reporting. The 

doublet methpxyl resonances of XXXII A, XXXII B and XXXIII appear in this 

order from low to higjh field with a range of chemical shifts of 0.020 ppm. 

Dilution with benzene causes all the doublets to appear at higher field 

but, whereas those for XXXII A and XXXIII (J = 12.0 Hz) are still 

separated by 0.017 ppm with the doublet of XXXIII at higher field, the 

doublet for XXXII B now appears 0.043 ppm to lower field of the one for 

XXXII A. 

5. Temperature and concentration dependencies 

The spectra of compounds in Table 2 that have been described thus 

far have been of samples near room temperature and often without solvent. 

Those compounds whose nmr spectra have been obtained at more than one 

temperature can be divided into two classes based on the presence or ab­

sence of spectral lines which broaden with increased temperature. Those 

that erfiibit such broadening are XXXVIII, XXXIX A, B, XLII, and XLV A, B 

while those that do not up to about 160° are XXXI A, B, XXXII A, XXXIII, 

XXXVI, XXXVII A, B and XLI A. Several of the compounds in the former 

group have also been examined at various concentrations in benzene. 
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The compounds giving broadened spectral lines contain a phosphorus-

chlorine or phosphorus-bromine bond. The methyl resonances of 2ÎXXVIII 

have = 2.0 Hz (1.23 ppm) and 1.2 Hz (0.788 ppm) and are 0.430 ppm a-

part at 40°C. With increasing temperature, these peaks broaden and be­

gin to coalesce. At 158°C, the maxima are separated by about 0.30 ppm 

with very little drop in intensity between them. Gagnaire, et al. (30)did 

not observe any apparent modification of coupling constants and chemical 

shifts between -40° and +155°. The discrepancy between the two observa­

tions may be due to the presence of a trace of water in the sample exhibit­

ing the line broadening. The isomers XXXIX A and B are present in a 3.9:1 

ratio at 40°C but the lines are slightly broader than those of XXXVIII. 

Dilution of the mixture with benzene caused a sharpening of the lines and 

a separation of the two halves of the methylene resonances, the two chloro-

methyl peaks and the two methyl peaks. An increase in temperature frmn 40° 

to 148°C caused the two chloromethyl (3.76 and 3.29 ppm at 40°C) and two 

methyl (0.87 and 1.33 ppm at 40°C) resonances to coalesce to apparent single 

peaks at 3.59 and 0.99 ppm, respectively. These coalesced peaks are posi­

tioned 36 and 26%, respectively, of the separation of the uncoalesced peaks 

at 40°C from the peaks of the major isomer A. The lines are sharper at 

148°C than at intermediate temperatures but not as sharp as at 40°C. The 

chloro derivatives XLI A and XLII were examined from -30 to 158°C. At 

-30°C, the methyl resonance of XLI A consists of a sharp doublet and 

that of XLII consists of two sharp doublets separated by 0.30 ppm. Qualitatively, 

the doublet of XLI A does not broaden up to 158°C. However, the two doublets 

of XLII coalesce to one doublet (J(H^CCH) = 6.3+ 0.2) which is still broad 
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at 158°C. The coalescence temperature for XLIl is about 50 + 10° (60 MHz) 

or 70 + 10°C (100 MHz). Dilution of this mixture of XLI A and XLII at 

40°C with benzene causes the partially-coalesced doublets of XLII to 

separate to about 0.40 ppm and sharpen. Addition of tetraphenylarsoniim 

chloride to a dilute benzene solution has no effect on the width of the 

methyl doublet of XLI A but causes the doublets of XLII to broaden to 

more than twice their original width. The bromine derivatives XLIV and 

XLV A, B have broader spectral lines at room temperature than the cor­

responding chlorine compounds. Moreover, spectra of different sangles 

of a given compound run under the same conditions differed in broadness. 

The resonances of a mixture of XLV A and B coalesce into four sharp 

peaks at l.Ol(CH^), 3.58(CH^C1), 4.01(0CH^) and 4.15 ppm(OCH^) with 

relative areas 1.5:1.0:1.0:1.0 at 161°C. The high-field halves of the 

methylene resonances do not coalesce as rapidly as the low-field halves 

so that the two peaks are of unequal height (1.13:1) at 161°C. Dilution 

of XLIV or a mixture of XLV A and B with benzene at room temperature 

causes the broadened and partially-coalesced lines to separate and sharpen. 

Spectra of these dilute benzene solutions reveal J(POCH) = 6.5+0.3 Hz (low-

field) and 10.5 + 0.5 Hz (high-field) and J(HCH) = 10.7 + 0.2 Hz for 

XLIV and XLV A. The sum of the POCH couplings, 17.0 + 0.8 Hz is the same 

as twice the separation between the two apparent methylene singlets for 

the neat XLV A, B mixture at 161°C. It is important to note that spectral 

lines from isomers A and B coalesce and that the nature of the species 

giving the spectrum at 161°C is yet to be determined. 



www.manaraa.com

The confounds exhibiting no broadening at elevated temperatures 

are alkoxyl, fluro and chloro derivatives. The one chloro derivative, 

XLI Â has been discussed already. In the case of the fluoro compound 

XXXVI, the chemical shift between the methylene protons, that between 

the methyl protons and the splittings dependent on J(POCH) change less 

than 1 Hz from 40** to 161°. Although the methyl and chloromethyl pro­

ton resonances of the fluoro isomers XXXVII À and B do not change more 

than 1 Hz frcan 40° to 161°C, the isomer ratio changes from 3.9:1 to 

about 2.0:1. The methylene resonance of XXXVII A, which masks that of 

XXXVII B, exhibits changes of less than 1 Hz. The two methoxyl deriva­

tives, XXXII A and XXXIII, were examined as an approximately 1:1 

mixture. The two methyl doublet resonances of XXXIII approach one an­

other in CDClg from 0.27 ppm at -61.5°C to 0.22 ppm at 40°C and as a 

neat mixture from 0.23 ppm at 40°C to 0.16 ppm at 156.5°C, but the 

methyl doublet resonance of neat XXXII A shifts less than 0.017 ppm from 

60° to 156.5°C. Obvious changes in line spacings and intensities in 

the methylene and me thine resonances occur throughout this temperature 

range, but overlap of the resonances of XXXII A and XXXIII prevent at­

tributing the changes to a specific compound. The spectral behavior of 

the methoxyl isomers XXXI A and B upon changes in temperature can be 

conçared to that of the fluoro isomers XXXVII A and B. In contrast, the 

isomer ratio decreases less than 5% from 3.6:1 at 40°C to 156.5° although 

the time of observation was at least as long as that of the fluoro 

isomers. The two halves of the methylene resonance of XXXI A approach 

from 0.62 to 0.57 ppm and J(POCH) changes less than 1 Hz. Also, the 

chloromethyl and methyl resonances of both isomers change less than 0.033 
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ppm. The isomer ratio in deuteriochloroform was not reproducible. One 

sample contained a 4.7:1 ratio at -61° and at 40°C three days later. 

The ratio in another sample at 40°C was 3.3:1 while that of a third, 

kept in a Dry Ice chest for about a week before being examined at 40°C, 

was 6.9:1. When a nonequilibrium mixture of ratio 1:1.75 was kept at 

70°C, the ratio changed to 2.0:1 after 40 hours and to 3.0:1 after an­

other 27 hours. 

31 
D. P NMR Spectra of Trivalent 

Phosphorus Compounds 

31 
Table 13 includes P nmr spectral data for CV and a number of the 

compounds in Table 2. Also, data taken from the literature for these 

and similar compounds are included for comparison. The A and B isomers 

were always examined together. Unfortunately, the nature of the fine 

structure of the resonances of the minor components XXXI B, XXXII A and 

XXXVII B could not be determined because of a small signal to noise 

ratio and/or overlap with the resonance of the major component. The 

broadness of the resonance of the chloro derivative XXXVIII may be due 

to the quadrupole moment of chlorine. 

Several relationships in Table 13 are worth pointing out at this 

31 
time. Geometrical isomers differ in P chemical shift in the three 

31 
pairs examined. In fact, the P shift is almost as sensitive to isomer-

19 
ism as the F shift in XXXVII Â and B. There is also the substituent 

effect on the shift that may not be easily distinguishable from the stereo­

chemical effect. The pair of phosphites differing only in methyl sub­

stitution at the 4-position, XXXIV and XXIX, and the analogous pair of 1-

chloro dérivâties have shifts differing by 7-8 ppm in each pair. This 
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Table 13. P spectral parameters of some l-pho8pha-2,6-dloxacvclohexanes and blcycllc phoaphltes 

Chemical Shift, 
Compound ppm Appearance Splittings, Hz 

XXIV 

XXXIV 

XXIX 

XXV 

XXXI A 

:P0CH2C(CHg)^CHg6 

iPOCHgCHgCHgO 

OCHo 

Z^OCHgCHgCHgt 

^2"5 

:P0CH2C(CH3)2CH2() 

^ 

;P0CH2C(CH3)2CH20 

OC^Hy 

:j%H^C(ciy^CH^ 

0C(CH3>2 

:joCHgC(CHgC1)(CH^)CH26 

OCH, 

•115.3,^-114.8^ 

-131 

•128,° -132+1° 

-123, -122.7 

-138^ 

-117.540.8 

-123.5 

bd qt 

bd qt 

bd tpt 

1:3:6:3:1 mpt 
of tpts 

10.540.5 

11.5 and 3.040.5 
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XXXI B :P0CHgC(CHgCl)(CHg)CHg6 -122.6 

icHa 

XXVI A :j0CH(CHg)CH2CHgb -I3I+l' 

% 

XXXII A :P0CH(CHg)qH2CH(CHg)6 -133 

ACH3 

c 

^Qt = quartet, bd = broad, tpt = triplet, mpt 
half height. 

^Reference 30. 

^Reference 143. 

bd qt 

multiplet, dbt = doublet, ̂ 1/2 ° width at 
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Tablé 13 (continued) 

Compound 
Chemical Shift, 

ppm 

XXXII B :j0CH(CHg)CH2CH(CHg)6 

OCH. 

•129 

H5C2O o •124+1 

H5C2O. .CO -125+1 

H5C2O -CO -125+1 

XXXVI^ :POCHgC(CHg)gCHgO -111.5, -132.9' 

Appearance^ Splittings, Hz 

qt of qts 10.5+0.5 and 
2.5+0.5 

dbt of tpta of 
tpts 

1180, 10.8, 3 
all + 0.5 
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XXXVII A®:joCHgC(CH^Cl)(CH^)CHg6 

F 

XXXVII ;POCHgC(CH^Cl)(CH^)CHgO 

• I 
F 

:P0CHgCHgCH^6 

zjoCHgCHgCHgb 

CI 

r 
XXXVIII; :P0CHgC(CHg)gCHg6 

CI 

•112.8 

•112.2 

•143.0 

•154, -153^ -153.9® 

•146, -146.5, 
-146.7° 

dbt of tpts of 
tpts 

db of tpts of 
tpts 

bd 

bd, 30+5 

10.340.3, 
3.6+0.3 

w 
w 

Cl-P(OCHg)gC(CHgO)2P-Cl 

XCVIKCI^) ; P (OCHg )^CCHg 

XCII :P(OCH)gCgH^ 

CV :P(0CH2)2CH 

0— 

-148.r 

-91.5, -91.8^ 

-137° 

•105.4+0.1 dbt of tpts of 
tpts 

J(P0CH)=2 

J(P0CH)=6 

15.9, 3.6 and 0.7, 
all + 0.2 

d A 9  
6 F = 6.14 ppm relative to Internal GFClg, J(P-F) = 1174Hz. 

e.l9 
6 F = 5.12 ppm, J(P-F) = 1182.8 Hz. 

fcl9 6 F = 6.05 ppm, J(P-F) = 1180,8 Hz. 
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kind of substitution is not expected to affect the stereochemistry. 

Methyl substitution at the 3-and/or 5-position in the l-alko:qrl deriva­

tives does not always cause a shift to higher field as does substitution 

at the 4-position. Dependence of the shift on exocyclic substituent at 

phosphorus does not appear to be related to the substituent electronega­

tivity. Even the shifts of 1-methoxy-, 1-propoxy- and l-t-butoxy-4,4-

dimethyl-l-phospha-2,6-dioxacyclohexane do not correlate with the 

electron releasing ability of the alkoxyl substituents. 

E. Stereochemistry of 1-R-l-phospha-2,6-dioxacyclohexanes 

1. Geometrical isomerism 

There are two possible geometrically isomeric structures for com­

pounds XXVI-XXVIII, XXX-XXXII, XXXVII, XXXK-XLI, XLIII and XLV. The 

1 
H riTTir resonances of two isomers have been observed at equilibrium for 

XXVIII (24), XXX (25), XXXI, XXXVII, XXXIX and XLV (dilute benzene); 

the ratio is about 9:1 for XXX and 3-4:1 for the others. Only one 

isomer has been found for XXVI (16), XXVII (24), XXXII (24), XL (25), 

XLI and XLIII (24, 16). With XL being the only exception (25), the 

generalization can be made that one Isomer is very dominant if the 

isomerism is due to substitution at the 3-and/or 5-positions while both 

isomers exist in significant percentages if the substitution is at the 

4-position. 

The Denneys (24), Aksnes, et al. (16) and Hargls and Bentrude (25) 

have concluded that an equilibrium mixture of isomeric six-membered ring 

phosphites (R = 0 Alk) results when a trlalkyl phosphite is trans-

esterifled with an appropriately substituted diol. On the other hand. 
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they found that a nonequilibrium mixture is formed when an alcohol and 

tertiary amine or, alternatively, an alkoxide ion reacts with an ap­

propriately substituted 1-chloro-l-phospha-2, 6-dioxacyclohexane (see Re­

view of Literature, pp. 17-19). This is true also for the phosphites 

XXXI A, B and XXXII A, B. Ratios of XXXI A:B of 1:2.6 and XXXII A:B 

as great as 1:4 are formed from the chloro derivatives whereas trans-

esterification leads to XXXI A:B = 3.5:1 and essentially all XXXII A. 

Preparation from the chloro derivatives is thought to involve a Walden 

inversion at phosphorus and should give an isomer ratio the inverse of 

that formed by transesterification since the ratio of chloro isomers is 

very similar to the ratio of phosphite isomers at equilibrium. The fact 

that complete inversion does not always occur has been attributed to ex­

cess strength of the nucleophile (alkoxide ion),excessively high reaction 

temperatures and/or the presence of nucleophiles after reaction (16, 24). 

The existence of nonequilibrium isomer mixtures implies that thermal 

atomic inversion of phosphorus is slow at room temperature. In a mix­

ture of XXXII A and B, the unstable isomer XXXII B does not isomerize 

in a Dry Ice chest even after a month. A 1:1.75 mixture of XXXI A:B at 

70°C does not completely return to the equilibrium value after forty 

hours and this must be considered a minimum time because isomer ization 

catalysts may have been present. Also, it is not known whether the rate 

controlling mechanism, in the absence of catalysts, involves a thermal 

intramolecular inversion or an intermolecular alkoxyl exchange like the 

halide exchange that will be discussed later. 
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2. Ring conformations 

Each of the compounds in Table 2 might exist in one or more conforma­

tions such as those analogous to the chair, boat or skew-boat forms of 

cyclohexane. Although no solid state or gas phase structural determina­

tion has been reported for any l-R-l-phospha-2,6-dioxacyclohexanes, one 

of the possible chair conformers has been found by solid-state x-ray dif­

fraction methods: for each of three 1-R-l-oxo-l-phospha-2,6-dioxacyclohex­

anes, XLVIII - L. In each compound, the phosphorus end of the chair-like 

ring is flattened 10-20° with respect to a cyclohexane chair. This 

flattening is probably due to the smal1er-than-tetrahedral OPO angle 

and larger-than-tetrahedral POC angles. The OPO angle would be expected 

to be even smaller when phosphorus is in the trivalent state and, there­

fore, the ring flattening should be even more prominent in 1-R-l-phospha-

2,6-dioxacyclohexanes. Also, the possibility that the solid-state and 

solution structures are different must always be considered. 

The results of the analysis of the nmr spectra of the 1-R-1-phospha-

4,4-dimethyl-2,6-dioxacyclohexanes can be interpreted in terms of possible 

ring conformations. The fact that Gagnaire, et al. (30) found no 

variation of J(POCH) from -40 to 155°C for XXIV, XXIX, XXXVI and XXXVIII 

indicates that in all likelihood one conformer is very dominant or less 

likely, the ratio of conformers remains constant over this temperature 

range. If the latter possibility were correct, the conformers would have 

to interconvert rapidly enough to give a weigjhted time average spectrum 

because spectral lines assignable to only one species are observed. As 

a result of the decoupling experiments described earlier, it may 

be concluded that just one pair of methylene protons, Bb', couples 
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appreciably, 0,7 - 0.8 Hz (30), to just one of the methyl groups of 

protons. There is even greater HCCCH coupling, 2.5 - 2.9 Hz, between the 

hanced HCCCH couplings are usually found x^en the bonds linking the 

coupled nuclei form a planar zigzag W (144). Such a pathway exists 

between the eqiiatorial methylene protons and between each of the axial 

methylene protons and an appropriately positioned axial methyl proton 

3 
of either a chair or boat conformer, as shown below. 

Thus, the lucuujrxcuc pi.wi.wuo cu.c LIIWJ- ̂  niOT e 

strongly to phosphorus than the axial methylene protons. Also, the 

axial 4-methyl protons are less shielded than the equatorial 4-methyl 

protons. These long-range coupling results rule out unsymmetrical boats 

or twist-boats (examples of which are shown below) inasmuch as they 

would not possess all of the appropriately-positioned protons. 

3 
A "boat" or "boat conforme:;" without preceding adjectives, re­

fers to the form with a plane of synmetry passing through phosphorus and 

A and a' protons but very little between the B and b' pair. These en-
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H 

% 
CH3 H 

imsymmetrical boat 

H H 

twist-or skew-boat 

Also ruled out are comparable quantities of rapidly interconverting 

chair or boat conformers because the enhanced long-range coupling would 

then be averaged among all of the methylene and methyl protons accord-

the chair and boat shown above, which differ only at the phosphorus end 

of the ring, would allow the same protons to always exist in an environ­

ment favorable for enhanced long-range coupling. The usual steric argu­

ments against a boat conformer are not as applicable here as for sub­

stituted cyclohexanes if the phosphorus end of the ring is flattened as 

in the chairs of the sold state pentavalent derivatives. This flatten­

ing not only would reduce.the bowsprit-flagpole interactions but also 

would allow the oxygen electron lone-pairs and the methylene protons to 

be staggered. The ring POCH coupling constants of the 4,4-dimethyl 

derivatives (Tables 11 and 12) may be used as evidence against a boat 

conformer (30). If a dihedral angular dependence of J(POCfl) similar to 

that of J(HCCH) exists, as has been suggested (40, 49 , 66, 145), the two 

values of J(POCH) for a boat, with dihedral angles of approximately 60°, 

should be similar but those for a chair, with dihedral angles of approxi­

mately 180° and 60°, should be different. The difference between the 

values of J (POCH) varies from 4.1 for the bromo derivative XLIV to 15.8 

ing to the ratio of conformers. However, a rapid equilibrium between 
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for the dimethylamino derivative XXXV (Table 12). 

The l-R-4-^-butyl-l-phospha-2,6-dioxacyclohexanes investigated by 

Ear gis and Bentrude (25), XXX A, XXX B and XL A, yield additional con­

formational inforaation. Partial results of the analysis of the nmr 

spectra of these compounds in CDCl^ (25) are given in Tables 11 and 12. 

The vicinal J(HCCH) for XXX A and XL A are in the ranges found for an 

4 
axial 5-H in 2-substituted-5-^-butyl-l,3-dioxacyclohexanes. However, 

similar vicinal couplings would also be expected for a boat conforma­

tion. The similarity of the ring J(POCH) between XXX A and XXIX or 

XXV and between XL A and XXXVIII indicates that all are conformât ionally 

similar. Evidence against this conclusion is the finding (25) that the 

cross-ring couplings, J(HCCCH), are less than 2.0 Hz. Both the HCCH and 

ring POCH couplings for XXX B and their temperature and solvent depend­

ence indicate a conformational equilibrium. Hargis and Bentrude (25) 

proposed a chair-chair rather than a skewboat-skewboat equilibrium 

mainly from a comparison of J(HCCH), 6h_ and ÔC(CH^)^ for XXX B and the 

2-substituted-5-^-butyl-l,3-dioxacyclohexanes. They did not consider 

a chair-boat equilibrium. If the equilibrium is between two chairs and 

J(POCH^) and J(POCH^^) in both conformers are equal to J(POCHg) and 

J(POCH^), respectively, for XXX A, then the conformer ratio at 35° in 

CDCl^ is approximately 3:1. The vicinal HCCH coupling constants indicate 

that the ^-butyl group is axial in the favored conformer. 

- 1-1-2-0' -'«Wseq) " 3-9-4-3. 

5.6 and J(H^^H^^) = 10.6-12.1 (21). 
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The rrnn- spectral studies of the l-R-4-me thy 1-4-chlor omethy 1-1-

phospha-2j6-dioxacyclohexanes XXXI A and B, XXXVII A, XXXIX A and XLV A 

indicate a conformational similarity to the analogous 4,4-dimethyl 

derivatives. The ring POCH coupling constants for XXXI A and XXXVII A 

do not change from 40° to 160°. An exchange phenomenon, to be discussed 

later, prevents analysis of the spectra of XXXIX A and XLV A over most 

of this temperature range. The J(POCH) values listed in Table 12 for 

these confounds are very similar to those for the corresponding 4,4-

dimethyl derivatives. The relatively-narrow 4-methyl resonance for 

XXXI A and the relative broadness of the same resonance for XXXI B in­

dicates that the A isomer possesses an equatorial and the B isomer an 

axial 4-methyl group. The splitting of 0.7 Hz in the 4-methyl re­

sonance of XXXI B is the same as that found by Gagnaire, et al. (30) 

for the 4,4-dimethyl compounds and attributed by them to coupling of 

axial methyl protons with axial methylene protons. The presence of a 

broadened low-fieId-half of the methylene resonance for B (Figure 6) is 

in agreement with this conclusion. On the other hand, the absence of a 

broadened methylene resonance for XXXI A (Figure 6) is in agreement with 

the absence of an axial 4-methyl group. The methylene resonances of 

XXXVII A, XXXIX A (CgHg) and XLV A (CgHg) are also relatively sharp. 

Apparently the axial 4-chloroinethyl protons in the A isomers are seldom 

appropriately positioned for enhanced long-range coupling to the axial 

methylene protons. This would be the case if the chlorine were as fax 

away from the ring as possible. The features of the methylene resonances 

of XXXVII B, XXXIX B and XLV B are masked by those of the A isomers, but 

the large chemical shifts between both the A and B methyl and chloromethyl 
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resonances and the similarity of these shifts to those for XXXI A and B 

are evidence for a conformational similarity of all the B isomers. If 

the A and B isomers exist as chair conformers rather than as chair-boat 

equilibria, then ttie R group at phosphorus must be axial in all of them 

or equatorial because the isomers of each pair differ in configuration 

at C-4. The similar isomer ratios of 3-4:1 for the four pairs leads 

to an axial/equatorial free energy difference for a chloromethyl and 

methyl group of approximately 0.7 kcal/mole at 40°. The fact that the 

isomers with an axial chloromethyl group are favored may be due to the 

fact that the C-Cl bond is longer than the C-H bond. Consequently, 

steric interactions of the axial chloromethyl group with other atoms 

in the molecule may be less than those of the axial methyl group. 

1 31 
The H and P nmr results for the isomeric phosphites derived 

from meso-2,4-pentanediol, XXXII A and B, strongly suggest that they dif­

fer in configuration at phosphorus. The values of J(HCCH) of 11.6 and 

2.2 for A (31) and of approximately 11.2 and 3.1 for B imply equatorial 

3,5-methyl groups.^ Also, 5(CHg) = 1.14 for XXXII A, 1.23 for XXXII B 

and 1.20 and 1.43 ppm for the phosphite XXXHIderived from d,1-2,4-

pentanediol. These shifts indicate a similar environment for the methyl 

groups of XXXII A and XXXII B and one of the methyl groups of XXXHI. On 

steric grounds, equatorial methyl groups would be favored. The ring J(POCH) 

for XXXII A and B are similar to the J(POCH) assigned to an axial 

methylene proton in all of the other phosphites in Table 12 ex­

cept XXX B. Since XXXII A and B are geometrical isomers, the methoxyl 

^J(H, H_ ) = 3.1-3.9 Hz, J(H, H_ ) = 9.5-10.9 Hz for cis-4,6-
4ax 5eq ' 4ax 5ax ' 

dimethyl-1,3-dioxacyclohexanes (21); see also footnote 2, p. 111. 
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group should be axial in one and equatorial in the other unless one 

isomer prefers a boat conformation. If both were boat conformer s, they 

would still differ in configuration at phosphorus and the methoxyl disposi-

31 
tion could still be called axial and equatorial. The 6 P values for 

XXXII A and B differ by 4 ppm whereas those for XXXI A and B or XXXVII A 

and B, concluded to have the same configuration at phosphorus, differ 

by less than 1 ppm (Table 13). Also, the contrast in the effect of 

benzene on the methoxyl chemical shift of XXXII B and that on the cor­

responding shifts of XXXII A and XXX indicates different environments of 

the methoxyl group in XXXII A and B. Althou^ the different configura­

tions at phosphorus cause the 3,5-methyl groups to resonate only 0.09 

ppm apart, B < A, the 3,5-methinyl protons resonate 0.35 ppm apart with 

A < B. The relative magnitudes of the separations are reasonable because 

the axial methinyl protons are closer than the equatorial methyl protons 

to the phosphorus electron lone pair and methoxyl group. 

The limited information about the phosphite XXXIII indicates that 

it is not conformationally pure at room temperature. This compound can­

not exist In geometrically isomeric forms because the methoxyl group is 

always cis and trans to a methyl group. The main evidence for a conforma­

tional equilibrium is the decrease in the separation of the 3,5-methyl re­

sonances with increasing temperature. This behavior is very similar to 

that found for the analogous l-oxo-trans-3.5-dimethvl-l-thia-2,6-dioxa-

cyclohexane by Overberger, et al. (146). These investigators inter­

preted their data in terms of an equilibrium between two rapidly inter-

converting chair conformers. 
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Bodkin and Simpson concluded that XXVI A and XLIII A adopt a chair 

conformation with the ring methyl equatorial (95). The evidence is 

only outlined qualitatively but is of the type presented above. The 

temperature dependence of the nmr spectrum of XXVI B suggested an 

equilibrium of rapidly interconverting conformer s at room temperature. 

At -30°, the ring possesses an equatorial methyl substituent (95). 

3. Stereochemistry at phosphorus 

Four groups of workers have deduced the stereochemistry at phos­

phorus in l-R-l-phospha-2,6-dioxacyclohexanes. On the one hand. 

Gagnaire, et al. (30) concluded that the methoxyl group in XXIX and, 

because of similar nmr spectral characteristics, the R group in 

XXIV, XXXV, XXXVI, XXXVIII and XLVI occupy the equatorial position 

in a chair conformer. On the other hand, first White, et al. (147), 

then Bentrude and Hargis (26) and Bodkin and Simpson (95) concluded that, 

for three different pairs of geometrically isomeric phosphites, the 

alkoxyl group occupies the axial position of a chair conformation in 

the more stable isomer. The preference for an axial alkoxyl, equatorial 

lone-pair stereochemistry is great enough to force a 4-^-butyl group to 

be axial approximately 75% of the time in XXX B at room temperature (26). 

Also, the 3-methyl group in the less stable isomer XXVI B apparently does 

not prefer the equatorial position strongly enough to force the ethoxyl 

group and phosphorus lone pair of electrons exclusively into an un­

favored configuration at room temperature (95). The evidence for the 

conclusions of Gagnaire, et al., Bentrude and Hargis, and Bodkin and 

Simpson has been outlined in the Review of Literature. In this section. 
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the deduction of the stereochemistry at phosphorus in several compounds, 

including XXXI A and B (147) will be presented and discussed in relation 

to the other methods that have been used. 

The manner of solving this stereochemical problem can be generalized. 

A geometrically isomeric 1-R-l-phospha-2,6-dioxacyclohexane is combined 

with a compound assumed to react with the isomer at phosphorus with 

either a retention or inversion of configuration. The configuration of 

the product isomer is then determined and used with the assumed reaction 

mechanism to deduce the configuration of the reactant isomer. Thus far, 

the product configurations have been determined in two ways, one from a 

comparison of experimental and calculated dipole moments (95, 147) and the 

other from a crystal structure determination by means of x-ray dif­

fraction analysis (26). 

Diborane reacts stereospecif ically with two mixtures of XXXI A and 

B, XXXII A, and a mixture of XXXII A and B in ether at -40°C. The 

stereospecificity of the reactions was deduced from the similarity of 

the product and reactant isomer ratios as determined from the tmrr 

spectra. Since the reaction involves the formation of a Lewis acid-base 

adduct, there is no reason why it should proceed with other than a 

configuration-retention mechanism. 

The Timr spectra of mixtures of LXXX and LXXXI, the adducts de­

rived from XXXI A and B, indicate that the stereochemistry at has not 

changed radically from that in the phosphites. The adduct isomers are 

probably not conformât ionally pure because the two 4-methyl and 4-chloro-

methyl resonances are separated by 0.39 and 0.35 ppm, respectively, where­

as for the phosphites they are separated by 0.53 and 0.57 ppm. An 
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equilibrium between rapidly interconverting conformers could cause this 

decreased separation for the adducts, but the unknown shielding effects 

of the substituents at phosphorus could also be responsible except that 

the affected protons are relatively far from phosphorus. Also, the 

difference in the 4-methyl resonances is only 0.3 - 0.4 Hz 

vAereas it is almost 0.8 Hz for the phosphites, but the coupling between 

an axial methylene proton and an axial methyl proton may not be the same 

in both phosphite and adduct. Unfortunately, the methylene resonances 

of the adducts overlap too extensively with each other and the other re­

sonances to determine the ring J(POCH) values. Nevertheless, the small 

shifts of the methyl and chloromethyl resonances upon adduct formation 

plus the other facts cited above strongly suggest that the adduct derived 

from XXXI A possesses a predominantly axial chloromethyl group and that 

derived from XXXI B possesses a predominantly equatorial chloromethyl 

group. 

The dipole moments of LXXX and LXXXI were then compared to values 

calculated by a vector summation of bond moments for the two possible 

chair conformers of each isomer. In the original calculations (147) the 

rotating components of the 0-C and C-Cl moments were considered to average 

to zero. Since the experimental moment is a root mean square average of 

the instantaneous molecular moments, the reported calculated moments are 

incorrect. An improved method of calculation has been described earlier 

in this thesis and the corrected values are underlined in Table 7, along 

with the experimental values. Recall that the methoxyl and chloromethyl 

groups were assumed to be freely rotating. If this assumption, the bond 

moments used, and the structural parameters are correct, then the isomer 
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with the greater moment is a mixture of conformers and the other has a 

predominantly equatorial methoxyl group. The free rotation assumption 

is very likely incorrect. For instance, an axial methoxyl group would 

sterically not likely be found positioned over the ring. Also, the 

chlorine atom of an axial chloromethyl group undoubtedly is not likely 

to be under the ring. Since the calculated mtsnents are directed more 

towards the phosphorus than the carbon end of the ring, these restrictions 

on rotation would cause some of the corrected values in Table 7 to be too 

great. The uncertainties in the bond moments, especially the P-0 moments, 

have already been discussed. As a result of the above considerations, 

the stereochemistry at phosphorus in the adduct isomers must unfortunately 

be considered uncertain for the present. 

The phosphites derived from meso-2,4-pentanediol have been concluded 

to have equatorial 3,5-methyl groups. The adducts XCI and XC, derived 

from XXXII A and B, might be expected to have equatorial 3,5-methyl groups 

also. This can only be assumed for the present because the nmr 

spectra of the adducts have not been analyzed. The experimental moments 

are surprisingly similar, in contrast to the calculated values (Table 7). 

A possible reason for this discrepancy, in addition to those considered 

above, is the existence of XC, derived from the unstable phosphite, in 

a boat form. This possibility would only be reasonable if the preferred 

stereochemistry at phosphorus were axial methoxyl, equatorial lone pair. 

Thus, if XC were a chair conformer with equatorial 3,5-methyl groups, the 

BH^ group, sterically like a methyl group, would be forced into the un­

favored axial position while the methoxyl group would likewise occupy the 

unfavored equatorial position. The adoption of the boat form shown be-
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low would satisfy both groups at phosphorus. Unfortunately, the stereo­

chemistry at phosphorus in these adducts must also be considered uncer­

tain for the present. 

The phosphite XXXII A and a mixture of XXXII A and B also combine 

stereospecifically with triphenyImethy1 chloride in acetonitrile at 

about 80°. This reaction should proceed by the Michae lis - Arbuz ov 

mechanism, considered to involve a retention of configuration at phos­

phorus (28, pp. 37-45). The product isomers will be assumed to have 

equatorial 3,5-methyl groups. The experimental dipole moments differ by 

1.03 D whereas the "best" calculated values (underlined in Table 7) 

differ by over 3 D. Rotation of exocyclic groups cannot alter the 

molecular moment; therefore, either one or more of the bond moments are 

incorrect or the ring does not adopt a conformation similar to the chairs 

assumed. Although the related compound XXI' (Table 14) adopts a chair 

conformation with an axial methyl group at phosphorus and equatorial 4-^-

butyl group in the solid (27), Bentrude and Hargis (98) have postulated 

a boat form in equilibrium with a chair in CDCl^ at 35°. If this were 

also the case for the analogous tr ipheny Ime thy 1 isomer in benzene, the 

observed moment should be less than the 6.17 D predicted for the chair 

conformer. Therefore, it is possible to rationalize the observed moments 

and conclude that the triphenyImethy1 group primarily adopts the axial 
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position in the product derived from XXXII B and the equatorial position 

in the product derived from XXXII A. Since the mechanism of the reaction 

is that shown on p. 20, the methoxyl group in the more stable phosphite 

isomer XXXII A is axially disposed. 

Bodkin and Simpson (95) used the same method as described above to 

determine the phosphorus stereochemistry in XXVI A and B. However, in­

stead of preparing borane adducts or 1-oxo-1-triphenyImethyl derivatives, 

they added sulfur to the phosphites. Their predicted moments of 5.78 and 

3.31 D for the thiophosphate isomers in benzene are quite close to the 

observed values of 5.36 and 3.19 D (Table 7). They employed a S=POg 

group mcsnent derived from the moment of the bicyclic thiophosphate 

SP(OCH^)^CCH^, a freely rotating ethoxyl group and tetrahedral angles in 

their vector summation calculation. Although the applicability of the 

S=PO^ group moment to these isomers is questionable, the "best" calculated 

moments (underlined in Table 7) differ only 0.17 and 0.42 D from these 

authors' calculated values. 

Bentrude and Hargis (26) used the methyl iodide Michaelis-Arbuzov 

reaction and ̂ -butyl hydroperoxide oxidation of XXX A and B as their re­

ference reactions. The configuration of one of the isomers from each re­

action was determined from x-ray diffraction analysis. This procedure is 

much more satisfactory than a dipole moment analysis and the conclusion 

that the methoxyl group of XXX A is axially disposed in a chair-conformer 

appears firmly established. There is no reason why the alkoxyl group 

should not also be axially disposed in the other phosphite A Isomers 

and XXIX and XXXIV. 
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Evidence has been presented for a conformational equilibrium for the 

phosphite XXXIII derived from d,1-2,4-pentanediol. This compound is 

different from the others because either the 3-or 5-methyl group would 

have to be axial in a chair-conformer. Overberger, et al. (146) have 

pointed out, in connection with the analogousl-dico-trans-3.5-dimethvl-l-thia 

2,6-dioxacyclohexane, that repulsion between axial 3- or 5-methyl and 

S=0 groups may reduce the stabilization of the S=0 group in the axial 

position. 

The conclusion of Gagnaire, et al. (30) that the preferred stereo­

chemistry is equatorial R, axial phosphorus lone-pair is based on a steric 

argument and the dependence of the magnitude of J(POCH) on the POCH 

dihedral angle and the disposition of the phosphorus lone-pair relative 

to the coupled nuclei. Similar arguments have been given and the same 

conclusion deduced by Albrand, et al. (31) (the same group of investi­

gators) in a discussion of the phosphorus stereochemistry in XXXII A and 

XLI A. In the latter paper (31), the POCCH couplings were the primary 

evidence. The steric argument has already been shown to be weak and the 

coupling argument will be analyzed, and shown to be inconclusive in 

Section IV.J.1. 

A much more direct method of determining the stereochemistry at 

phosphorus than those previously described would be an x-ray diffraction 

analysis of one of the l-R-l-phospha-2,6-dioxacyclohexanes. Such a 

study is hindered by the liquid nature of most of these compounds at 

room temperature. One of the better possibilities would be XXXII A. The 

3,5-methyl substituents are likely to be equatorial in both solid and 

liquid such that the solid-state structure could more confidently be ex­
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trapolated to the liquid state. A low-temperature x-ray analysis is 

currently being carried out on the phosphite XXIX (148). Dipole moments 

of XXXII A and B (believed to differ in stereochemistry at phosphorus) 

have been measured but they differ by only 0.6 D. The uncertainties in­

volved in predicting dipole moments and the instability of phosphites 

towards water preclude making a stereochemical prediction based on these 

moments. 

The adoption of a stereochemistry contrary to that expected on 

steric grounds is not unknown in heterocyclic chemistry. The axial oxygen, 

equatorial sulfur electron lone-pair stereochemistry has been concluded 

to be generally preferred in 1-oxo-1-thia-2,6-dioxacyclohexanes (23). 

Also, an axial alkoxyl, equatorial hydrogen stereochemistry is preferred 

in 2-alkoxy-1,3-dioxacyclohexanes (149). These preferences are termed 

anomeric effects, by which is meant the greater preference of an electron-

withdrawing group for the axial position when it is located adjacent to 

a heteroatom in a ring than when it is located elsewhere (150, p. 375). 

The paper by Eliel and Giza (149) should be consulted for references to 

additional examples. Steric and electrostatic factors are thought to be 

important in determining the position of the generalized equilibrium 

shown below. Y is a heteroatom, T is carbon or phosphorus in this dis-

x 

z 

A B 
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cuss ion and X and Z are the exocyclic substituents adjacent to the hetero-

atom of the ring. If X is bulkier than Z, the steric factor will cause 

conformer B to be favored more in a 1,3-dioxacyclohexane than in a 1-

phospha-2,6-dioxacyclohexane because the hetero end of the ring is 

compressed relative to cyclohexane in the former structure (149) and 

probably flattened relative to cyclohexane in the latter structure. 

Compression would increase the interactions of the axial substituent X or 

Z with other axial substituents but more so for the bulkier X. The 

electrostatic factor will cause the conformer with its bond dipoles 

closest to an anti-parallel arrangement, i.e., the conformer having the 

lower dipole moment, to be favored. If the T-X bond is more polar than 

the T-Z bond and the moments are directed towards X or Z, then conformer 

A should be favored because in B the T-X bond moment is approximately 

parallel to the C-Y moments, which are directed towards Y. If X is 

methoxyl, there will be an additional OCH^ moment to consider. Eliel 

and Giza (149) have reasoned that, electrostatically, A should be favored 

if Y = oxygen, T = carbon and Z = hydrogen. It is difficult to predict 

which conformer will be favored when Y = oxygen, T = phosphorus, X = 

methoxyl and Z = lone pair of electrons because the P-0 and phosphorus 

lone-pair moments are unknown. However, the moment of the more stable 

isomer XXXII A is smaller than that of the less stable XXXII B in benzene 

(Table 7). The facts are that the axial methoxyl group is preferred by 

0.35 kcal/mole in 2-methoxyl-1,3-dioxacyclohexanes (149) and by at least 

1 kcal/mole in 1-alkoxy-l-phospha-2,6-dioxacyclohexanes. The alkoxyl 

preference in the two classes of compounds cannot be compared because Z 

is not the same in both, but a comparison can be made of the stereo-
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chemical preference of the pair of substituents X and Z. It is quite 

improbable that the steric factor alone would cause the observed stereo­

chemistry in the phosphorus compounds to be preferred to any extent. 

Thus, if the electrostatic factor is the only other important factor, 

it must favor the observed stereochemistry by at least 1 kcal/mole. 

4« Interpretation of temperature and concentration dependencies of 

•nrrrr spectra 

A process that will account for the temperature and concentration de­

pendencies of the nmr spectra of the l-R-l-phospha-2,6-dioxacyclo-

hexanes (R = OCH^, F, CI, Br) is an intermolecular exchange of the exo-

cyclic R group at phosphorus involving an inversion of the bonds to 

phosphorus. A mechanism for this process is shown in Figure 7. The R 

group and phosphorus lone-pair are assumed in this discussion to prefer 

the axial and equatorial positions, respectively, of a chair conformer. 

Also, the mechanism is assumed to be the same for all the molecules in­

vestigated. In the initial structure in Figure 7, K^, and R^ are 

trans to R and H^, Hg, and R^ are cis to R. In the final chair conformer, 

the cis. trans relationships of these atoms are reversed. Also, H^, H^/ 

and R^ are initially in equatorial positions but move to axial positions 

as a result of the exchange process; Hg, Hg,and R^ similarly change from 

axial to equatorial positions. 

The process is believed to be an intermolecular exchange rather than 

a thermal intramolecular inversion at phosphorus for two reasons. Firstly, 

dilution with benzene of compounds that exhibit partially coalesced re­

sonances causes the resonances to separate and sharpen. It is now 

realized that benzene was a poor choice as a diluant because it consnonly 
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Figure 7. A mechanism for intermolecular exchange 
of the exocyclic R group at phosphorus 
in l-R-l-phospha-2,6-dioxacyclohexanes 
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causes resonances to shift to higher field to different extents. Con­

sider a case where two 4-methyl groups are exchanging axial, equatorial 

positions and have the same probability of being in either position. The 

shape of the two coalescing spectral lines depends on the product of 

the magnitude of the frequency difference of the lines in the absence 

of exchange ( I ) and the lifetime (2T) of a methyl group in either 

site. Thus, any agent that causes to increase will cause the 

lines to separate and sharpen (138, p. 223). Benzene has been observed 

to cause to increase in instances Wiere line broadening has not 

been noted. Thus, it is not known for certain that dilution with benzene 

causes 2t to increase also. Goldwhite and Fontal (15) found that the 

process causing the two methyl resonances of the five-membered cyclic 

compound l-chloro-3,3,4,4-tetramethyl-l-phospha-2,5-dioxacyclopentane to 

coalesce could be slowed by diluting the compound with benzene, toluene, 

chloroform and dioxane. These authors determined coalescence temperatures 

for a neat sample (-23°C) and two toluene solutions and determined peak 

positions as a function of concentration in benzene. The results for the 

aromatic solvents are meaningless if these solvents cause to 

change with concentration. Dilution with chloroform and dioxane should 

not cause to change appreciably; therefore, the rate controlling 

process seems to be intermolecular. There is no obvious reason \rfiy a 

similar process should not occur for the six-membered cyclic compounds. 

Secondly, tetraphenylarsonium chloride causes the 3,5-dimethyl resonances 

of XLII to broaden. This is reasonable if the rate-controlling step of 

the process involves attack of chlorine on the cyclic molecule. It is not 

possible, from the available facts, to distinguish between dissociative 



www.manaraa.com

156 

and nondlssociative mechanisms. Examination of molecular models shows 

that a four-center collision complex is sterically more favorable if the 

R group is axially rather than equatorially disposed. However, it is 

impossible to place both attacking atoms in positions to simultaneously 

undergo the idealized Walden inversion shown below. One possibility 

R- A 
.A 

—R = R-
f.. 

•R R-Ft̂  ̂R 

would be attack of an tmdissociated R on the phosphorus atom of a second 

molecule, dissociation of the anion R of the second molecule and then 

attack of this R on phosphorus of the first molecule. The second R may 

attack the first phosphorus before it is completely dissociated from 

the second phosphorus. 

The proposed mechanism can readily account for the temperature de­

pendence of the spectra of the two pairs of isomers X3CX3X A, B and XLV A, 

B. In each isomer, R^ and R^ are different, i.e., CH^Cl and CH^. For 

both pairs, an increase of the temperature causes resonances character­

istic of two isomers to coalesce. The mechanism shown in Figure 7 allows 

the phosphorus lone-pair and R group to remain in their favored stereo­

chemistry and also allows the carbon end. of each molecule to flip rapidly. 

Thus, for the isomeric pairs, this process is an isomerization. The ratio 

of axial to equatorial R^ is determined by the relative preferences of 

R^ and R^ for the axial and equatorial positions. This ratio is about 
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1.8-2.8:1 at 148° for = CH^Cl in XXXIX A and B as determined by the 

positions of the coalesced chloromethyl and methyl resonances relative 

to the resonances in the absence of exchange. This ratio is similar 

to the ratio of fluoro isomers XXXVII A, B at 161° and indicates that 

the stereochemistry at phosphorus is the same in both chloro and fluoro 

isomers. Since and do not change their cis. trans roles 

relative to and R^, the chemical shifts of and H^/ are not ex­

pected to become equal to those of and Hg / at any temperature. The 

methylene resonance of a mixture of XLV A and B changes from a complex 

resonance at 40° to two observable lines of different width at 161°. 

Unfortunately, all that can be concluded is that ^ (J^y-

(2J^) is becoming small (139). Rapid flipping of the carbon end of 

the molecule should cause (J^ - to be less than the 4 + 1 Hz 

observed for XLV A at 40° (C^H-). Since the methylene protons are 
o b 

changing their axial^ equatorial roles, should also be less than when 

one pair is always axially and the other equatorially positioned. Thus, 

when coalescence is complete, the coupling constants and chemical shifts 

of all protons should be averages weigjhted according to the ratio of time 

spent by each nucleus in different environments. 

The 1-chloro derivative XLI A exhibits no spectral broadening from 

-30° to 158° and tetraphenylarsonium chloride does not cause the 3,5-

dimethyl resonance to broaden. The proposed exchange mechanism can 

account for this behavior in the following way. Although the stereo­

chemistry at phosphorus is the same in the initial and final structures, 

the 3,5-methyl groups change from equatorial to axial positions. The 

latter positions should be sterically very unfavorable and flipping of 
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the carbon end of the ring should be slow relative to the rmtr time scale. 

Even if the flipping rate were great, the weighted average chemical shift 

of the methyl groups would be practically identical to the shift in non-

exchanging XLI A and no broadening would be observed. In other words, 

the two sites of the methyl groups have very different probabilities of 

being occupied. 

If the proposed mechanism is correct, the chemical shifts of the 

two exocyclic substituents at each ring carbon atom in XXXVIII, XLIV and 

other compounds with two identical substituents at these carbons should 

become equal at a sufficiently-high temperature. Such a temperature has 

yet to be found. The bromo derivative XLIV exhibits the most broadening 

at room temperature but has not been examined at higher temperatures. 

The 1-chloro derivative XLII derived from d,1-2.4-pentanediol should ex­

hibit one 3,5-methyl resonance at high-enough temperatures. The two 

doublets do coalesce but the peaks of the resulting doublet at 139° 

still have W, = 3.2 + 0.2 compared to W. = 0.8 +0.1 for the XLI A in 
1/2 — - 1/2 — 

the same sample. 

The rate of exchange for the isomeric pairs XXXI A-B, XXXVII A-B, 

XXXIX A-B and XLV A-B depends on the exocyclic R in the order: CH^O < F 

< Cl < Br. The order CH^O < F is based on the fact that the ratio of the 

fluoro isomers changed appreciably from 40° to 161° whereas the ratio 

of methoxyl isomers did not during approximately the same length of time. 

A difference in the rate of intramolecular inversion of the bonds to 

phosphorus or the presence of an isomerization catalyst in the sample of 

fluoro isomers could also account for this observation. Nevertheless, the 

exchange rate for XXXI A, B appears to be quite small. The extent of 
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spectral broadening at a given temperature can be used as an indication 

of relative exchange rate for a series of compounds if the uncoalesced 

lines are equally separated in all the ccmpounds. Thus, the 4-methyl 

resonances in the pairs being discussed are separated by 0.52, 0.51 and 

0.46 ppm, respectively, at room temperature. The value for the chloro 

compound may be small because the lines are slightly broadened at this 

temperature. The separation for the bromo compound is probably similar 

to that for the others and, if so, the order CI < Br follows. Like­

wise, the separations of the 4,4-dimethyl resonances in XXIX, XXXVI and 

XXXVIII are 0.49, 0.48 and 0.43 ppm, respectively, at room temperature. 

If the separation for the chloro and bromo isomers is assumed to be 

approximately the same, then the exchange rate order is (CH^O,F) < 

CI < Br. The methoxyl and fluoro derivatives cannot be compared be­

cause no temperature dependence was observed in this investigation or 

by Gagnaire, et al. (30). 

31 1 
F. Description and Analysis of P and H NMR Spectra of 

2,6,7-Trioxa-1-phosphabicyclo [2.2.l] heptane (CV) 

The and ^^P nuclei of CV constitute an AA.'bb'mx spin system. The 

nuclei are labeled in Table 11. The complete spectrum is shown in 

Figure 8. Trial magnitudes of the chemical shifts and other coupling 

constants, except / (= and / , were obtained by 

analyzing the spectrum as an AA'gg'mX type without appreciable J(HCCCH). 

In this approximation, the X resonance should be a doublet (J^) of 

triplets (J^ = of triplets (J^^ = /^) ; the M resonance a doublet 

(-^Nx) triplets (J^ = of triplets (J^^ = Jg'^); the Gc' re-
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Figure 8. The H and P nmr spectra of 2,6,7-trioxa-

1-phosphabicyclo [2.2.1] heptane (CV) 

31 
a. The P resonance. 
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Figure 8 (continued) 

b. The bridgehead resonance. 



www.manaraa.com

s.37 

5.11 

CH RESONANCE 



www.manaraa.com

Figure 8 (continued) 

c. The methylene H resonance. One peak is assigned 
to an impurity (IMP) because its relative intensity 
changed by a factor of three when CV was re-
crystallized. 
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sonance a doublet or of doublets or J^/^) of doublets 

(J or J / ) and the AA' resonance a doublet (J. or J./ / ) of doublets 
(2L G X aC? A v7 

(J^ or of doublets (J^ or The spacing due to is common 

to the M and X resonances and is 15.88 Hz (M resonance). The other 

s pacings in the X resonance are approximately 3.6 and 0.6 Hz and those 

in the M resonance are 3.1 and 0.3 Hz. The approximate mirror-plane-

symmetry of the AA'bb' resonance suggests that one pair of protons is 

more strongly coupled to X and less strongly coupled to M than the other 

pair. The magnitude of was estimated as 7.0 Hz. The chemical shifts 

of the AA' and Bb' protons were initially arbitrarily taken as the centers 

of the high- and low-field halves, respectively, of the AA'bb' resonance. 

After establishing these trial parameters, approximate magnitudes of the 

J(HCCCH) coupling constants were determined by calculating, with the aid 

of LAOCN 3 (140), the AA'bb' part of the spectrum with various sets of 

J ̂ CCQO values until calculated lines could be associated with the four 

peaks at the center and the triplet at each end of the resonance. Vicinal 

J(POCH) (see Section IV.J. 1) and J(HCCH) (141, pp. 172-4) couplings were 

made positive and J(HCH) and J(HCCCH) couplings were made negative (141, 

pp. 172-4). LAOCN 3 (140) was then used to determine a best set of par­

ameters. The X resonance peak positions were used only in the earlier 

iterations because they are known with less accuracy and precision 

than those of the ^H resonances. Use of the above coupling constant signs 

led to a root mean square error of calculated versus observed line posi­

tions no less than 0,15 Hz. However, when / was made positive, itera­

tion led to a root mean square error of 0.061 Hz. After this change, 

neither interchange of the chemical shifts of AA' and Bb' nor interchange 
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of these shifts and / and / allowed an iteration giving a rms error 

less than 0.14 Hz. Thus, the smaller J(POCH), larger J(HCCH) and largest 

J (HCCCH) appear to be associated with the methylene protons (Aa') re­

sonating at higher applied magnetic field. The best set of parameters and 

related information are given in Table 11. No additional reversals of 

coupling constant signs or interchanges of parameters were attempted to 

determine their uniqueness. 

The final coupling constants and chemical shifts can be tentatively 

assigned to nuclei as shown in Table 11. The large J(HCCCH) is associated 

with the exo protons because they are undoubtedly linked by a planar W 

arrangement of bonds. Examination of a molecular model shows that the 

HCCH dihedral angles are ça. 80° (endo) and ça. 40° (exo). The smaller 

J(HCCH) value of 0.16 Hz can be associated with the endo protons and the 

larger magnitude of 3.34 Hz with the exo protons if J (HCCH) is related to 

the HCCH dihedral angle as it is in hydrocarbons (151), where J (HCCH) is 

a maximum for dihedral angles of 0° and 180° and a minimum for an angle 

of 90°. It is not unreasonable that the exo protons resonate at higher 

field than the endo protons since the equatorial OCH^ protons resonate at 

higher field than the axial OCH^ protons in all the 1-R-l-phospha—2,6-

dioxacyclohexanes studied thus far. The J(POCH) values of 0.29 Hz is 

associated with the exo protons and that of 3.83 Hz with the endo protons 

as a consequence of the foregoing assignments. 

Robert (99a) examined the ^H nmr spectrum of a CCl^ solution of CV 

at 100 MHz. The small spacings of about 0.3 Hz in the M resonance were 

not noted. The results of the AA'bb'mX analysis are given in Table 11. 

They compare very favorably with those found independently from the 60 MHz 
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s p e c t r u m .  Th e  c o u p l i n g  c o n s t a n t s  a n d  c h e m i c a l  s h i f t s  w e r e  a s s o c i a t e d  

with the nuclei in the manner described above. Robert could not de­

termine the relative signs of J(BX) and J(AX). 

Spectra of CV in acetonitrile and deuteriochloroform appear similar 

to the neat spectrum. However, dilution with benzene causes the Aa' and 

Bb' resonances to move upfield and converge, resulting in a limiting re­

sonance of three intense lines and some very weak outer lines, as ob­

served at 500 Hz sweep width with a Varian A 60 spectrometer. The M 

resonance moves upfield more rapidly than the others and additional lines 

appear. 

G. Stereochemistry of 1-Oxo- 1-R-l-phospha-2,6- dioxacyclohexanes 

1. nmr spectra 

a. Results of analysis Tables 14 and 15 contain the results of 

analysis of 77 ^ nmr spectra of 34 1-oxo-1-R-l-phospha-2,6-dioxacyclo­

hexanes. Some of the compounds were examined at more than one concentra­

tion or temperature or in more than one solvent. Each of the pairs of 

spectra Ill'c-d, Ill'e-f, xix'c-d, xix'e-f, XIX^g-h and XXXIIl'c-d re­

presents the highest and lowest temperature spectra that were analyzed at 

the listed concentration and solvent. The spectral parameters at 

temperatures between the limits are qualitatively those expected by inter­

polation. Included in Tables 14 and 15 are pertinent results from the 

literature (35, 39, 40, 98). All of the 4-halomethyl-4-alkyl derivatives, 

except XXX % have the trans-l-R-4-halomethy1 configuration because they 

were prepared from P(OCH^)^CRg by the Michaelis-Arbuzov reaction (42); 

compound XXX' has been concluded to have the opposite configuration (42). 
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Table 14. Results of spectral analysis of some 1-R-1-oxo-1-phospha-
2.6-dio3cac^lohexanes - part 1 

Compound 
and 

Spectrum 
Number R R, 

Ring 
Methylene B»ton 
Chemical Shifts 
A B 

I'a 

II'a 

III a 
b 
c 
d 
e 
f 
g 

iv' a 

V' a^ CCCHgX^OH 

CH„ 

CH3 

CH. 

S-C3H7 

[ CH^OH, 

CE. 

CH^Br 

CHgCl 

CBgCl 

CH^ ] 

3.45 4.22 
3.46 4.26 

3.42 4.28 

3.00 4.04 
3.49 4.43 
3.47 4.41 
3.45 4.35 
2.91 3.91 
2.97 3.93 
3.37 4.25 

3.46 4.24 

4.79 4.39 

^The protons coupled more strongly to phosphorus are designated A. 

^C^H^N = pyridine and C^HyCl = £ - chloronapthalene. 

^The eight— five-and two-line spectra contain no, one and two 
collapsed AB quartets, respectively. A quartet is considered collapsed 
if the two central lines cannot be resolved. 

^Isomer unknown. 
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Ring J(POCH) 
Coupling ^ 
Constants ^ Concentration Temperature, ^ 
A B Solvent Molarity °C Spec trim Analysis 

14.6 6.5 CDCl 1.0 30 8 ABX 
14.2 6.5 CDCl^ 0.12 40 8 AMX 

11.4 9.4 CDCl^ 0.46 40 8 ABX 

12.7 8.0 C,H 0.17 40 8 AMX 
11.2 9.2 C33 0.54 40 8 ABX 
10.9 9.5 C^HIN 0.38 36 8 AMX 
11.4 9.1 C^HIN 0.38 84 8 AMX 
11.5 9.1 C^HfCl 0.16 92 8 AMX 
11.7 9.0 C^HICI 0.16 122 8 AMX 
11.0 9.8 CDCl^ 0.27 40 8 ABX 

11.5 9.5 CDCl^ 0.27 40 8 ABX 

10.6 9.4 C^H^N 0.31 40 8 ABX 
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Table 14 (continued) 

Canpound 
and 

Spectrum 

Ring 
Methylene Proton 
Chemical Shifts 

Number R 
^5 ^6 

A B 

VI ' a® C(CH^)^ CH3 CH3 3.70 4.35 

VII'a® CH(CH^)(C^H^) CH^ CH3 3.77 4.25 

VIII' a OCH 
b 
c 

CH3 CH3 Average = 
Average = 
Average = 

4.01 
3.92 
3.55 

IX' a OC(CH^)^ CH3 CH3 3.85 4.04 

X' a^ OCH^ H CCCH^)^ 4.40 4.40 

XI ' a^ OCHg CCCHg)^ H 4.42 4.25 

XII' a^ OCgHj CH3 CH3 

XIII'a ^S®10^ =2*5 CHgCl 4.00 4.34 

^Reference 35. 

"Approximately 10% (35). 

^Ambient (35). 

^Spectra at 60 and 100 MHz were analyzed. 

Reference 98. 

^Approximately 20% (98). 

Reference 40. 

Piperidino. 
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Ring J(POCH) 
Coupling ^ 
Constants 

A B Solvent^ 

Concentrât ion 
Molarity 

Temperature 
°C 

' c 
Spectrum Analysis 

19 2 cdclg 
f ___ ë  8 ABX 

15.4 5.2 CDCl^ 
f s 8 ABX 

Sum = 23.6 CDCl. 1.9 40 5 ABX 
Sum = 24.0 CCI/ 0.16 40 5 ABX 
Sum = 23.4 0.54 40 5 ABX 

21.0 3.3 cdclg 1.1 30 8 ABX^ 

Sum = 23.4 cdclg 
j 

35 aa'bb'xy 

22.8 1.14 CDClg 
j 

35 aa'bb'xy 

21 3 CHClg 

15.6 9.0 CDClg 1.0 40 8 ABX 
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Table 14 (continued) . 

Compound Ring 
and Methylene Proton 

Spectrum Chemical Shifts 
Number R R^ R, A B 

-> o 

XIV' a® NHC(CH^)^ CH3 CH3 3.85 4.22 

XV' a® NaC(CH^)^ C2H3 3.90 4.20 

XVI' a° m(n-C^H^) CH3 CH3 

XVII' a"^ CH3 CH3 

XVIII' a 
b 

CH3 CH3 CH3 3.84 
3.22 

4.16 
3.92 

XIX ' a 
b 
n 
c 
d 
e 

f^ 
g 
h 
i 

CH3 CH3 CH^Br 4.30 
4.33 

4.37, 4.34 
4.33 
Average = 

4.24, 4.28 
3.74 

Difference 
3.91 

4 

4 

4.08 
4.00 

.18, i 

4.04 
4.30 

.15, 1 
3.19 
0.57 
3.28 

xx' a 
b 
c 
d 
e 
f 

CH^ CH3 CH^I 3.22 
4.16 
Average 
4.28 
4.29 
4.32 

3.88 
4.16 
4.20 
4.08 
4.04 
3,96 

XXI ' CH3 CCCB^)^ H 4.43 4.13 

XXII ' a^ CH3 H CCCHg)^ 4.30 4.40 

XXIII' a 
b % CH3 CH^Br 3.22 

4.34 
3.98 
3.99 

^Reference 39. 

^The correct set of parameters has not been determined. The entries 
on the left side of each column and those on the right side constitute 
the two sets. 
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Ring J(POCH) 
Coupling ^ 
Constants Concentration Temperature, 

A B Solvent^ Molarity Spectrum^ Analysis 

16.3 7.8 CDCI3 
f g 

8 ABX 

16.5 8.0 CDClg 
f ___s 8 ABX 

20.8 2.9 

21.5 2 ''A 
12.8 10.2 CDC1_ 2.6 30 8 ABX^ 
15.2 8.0 0.17 40 8 ABX 

16.6 7.1 CDCl, 1.8 40 8 ABX 
14.6 8.4 CDCI3 0.68 40 8 ABX 

19.5,23.2 4^,0.6 CDCl 0.76 -52 8 ABX 
15.8 7.2 CDCl, 0.76 1 8 ABX 
Sum = 24.4 S^5  ̂ 1.0 36 5 ABX 

22 J, 17 j 0.9,6.1 C H N 1.0 84 8 ABX 
14.9 8.7 C^HICI 0.35 75 8 ABX 
12.7 10.8 C^H^Cl 0.35 164 8 ABX 
13.0 10.6 « 0.13 40 8 ABX 

12 11 CgH. 0.12 40 8 AMX. 
19.8 .3.2 

0 D 
CD^CN 1.2 40 8 ABîT 

Sum = 23.5 CDC13 2.3 40 5 ABX 
16.5 7.8 CDCl- 1.3 40 8 ABX 
14.5 8.7 CDCIZ 0.63 40 8 ABX 
12.7 10.9 CDCI3 0.13 40 8 ABX 

16.9 —- 6.80 CDCl. 
j 

35 aa'bb'xy 

22.7 6.40 CDClg 
j -54 aa'bb'xy 

20.2 4.14 CDClg 
j 

35 aa'bb'xy 

13 10 c.h 0.088 40 8 AMX 
13.0 10.0 

0 0 
CDCl. 0.92 40 8 ABX 
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Table 14 (continued) 

Compound Ring 
and Methylene Proton 

Spectrum Chemical Shifts 
Number R R_ R, A B 

J D 

XXIV' a n-C H CH CH Br 4.05 3.47 

b 4.34 3.96 

c 

. / e 
2 6 5 3 3 

4.36 3.93 

XXV a n-C H CH CH I 4.28 4.00 

b  ' 4 . 0 4  3 . 5 0  

XXVI' a C.H_ CH. CH. 3.48 4.06 
b J J o 

b 3.38 4.07 

c 3.88 4.26 

d 3.73 4.35 

e 3.74 4.36 

f 4.13 3.89 

g 4.14 3.90 

h 4.15 3.91 

i 4.14 3.89 

j 4.14 3.89 

XXVII' a® CHjC^Kr CH^ CH„ 3.70 4.17 

XXVIII a CH^C^H^ CH^ CH^Cl 4.33 3.79 

XXIX ' a CH.C.H_ C.H CH. CI 4.16 3.95 
6 V V Z 3 / 

b 4.25 3.82 

c 3.92 3.15 

XXX ' a CH_C.H_ CH_C1 C„H_ 3.94 4.30 
Z O J / Z 3 

XXXI ' a Br H CH-Br Average = 4.61 
2 

XXXII* a° Br CH^ CH^Br 4.22,4.32 4.45,4.36 
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Ring J(POCH) 
Coupling ^ 
Constants Concentration Temperature, 

A B Solvent^ Molarity o^ Spectrum'^ Analysis 

11.3 11.3 0.35 40 8 ABX 

12.8 10.2 CDClg 0.72 40 8 ABX 

11.5 11.3 CDClg 0.22 40 8 ABX 

13.0 9.8 CDClg 0.89 40 8 ABX 

11.2 11.2 0.59 40 8 AMX 

13.8 9.3 (=6^6 0.65 40 8 ABX 

15.4 7.0 (=6^6 0.14 40 8 ABX 

12.8 10.8 CDCI3 1.3 40 8 ABX 

16.9 6.5 CCI3F 0.042 40 8 ABX 

16.4 6.5 CCI4 0.14 40 

13.5 9.5 CHgCN 1.6 40 8 ABX 

13.8 9.6 CHgCN 0.26 40 8 ABX 

15.6 8.6 CHgCN 1.5 -40 8 ABX 

13.4 9.8 CHgCN 1.5 50 8 ABX 

12.6 10.4 CHgCN 1.5 80 8 ABX 

14.9 7.8 CDClg 
f ___s 8 ABX 

12.0 11.0 CDCI3 
f g 

8 ABX 

15.1 7.3 CDCI3 1.5 40 8 AB2^ 

11.8 10.2 CDClg 0.40 40 8 ABX 

11.2 11.2 % 0.09 40 8 AMX 

18.8 4.6 CDClg 0.75 40 8 ABX 

Sum = 34.0 CDClg 0.90 40 5 ABX 

18.7,30.3 14.8,3.0 CDCl^ 0.79 40 8 ABX 
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Table 14 (continued) 

Compound Ring 
and Methylene Proton 

Spectrum Chemical Shifts 
Number R R^ Rg A B 

XXXIII ' a CI CH^ CH^ Average = 4.27 

b Average = 4.16 

c Average = 3.23 

d Average = 3.40 

XXXIV ' a H CH^ CH^ Average = 3.54 

b Average = 3.98 
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Ring J(POCH) 
Coupling ̂  
Constants Concentration Temperature, 

A B Solvent^ Molarity o^ Spectrum^ Analysis 

Sum = 32.2 CDClg 0.37 -61 

Sum = 31.4 CDC13 0.44 40 

Sum = 30.8 CgHyCl 0.30 40 

Sum = 30.6 C^HyCl 0.30 95 

Sum = 26.8 
^6^6 

1.1 40 

Sum = 26.6 CCI4 0.070 40 

5 ABX 

5 ABX 

5 . ABX 

5 ABX 

5 ABX 

2 ABX 
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Table 15. Results of spectral analysis of some l-R-l-oxo-l-pho8pha-2.6-dloxacvclohexane8 - part 2 

Compound 
and 

Spectrum 
Number R 

s *6 

Chemical Shifts 

R Rg , «6 

Coupling 
Constants 

l' a 

b 

C(CgHg), CH3 CH3 

7.08-7.63 

Co.76 
Co.78 

0.96]^ 

0.98f 

II ' a C(CgHg), CH3 CHgBr 7.15-7.60 0.80 3.48 

III' a 
b 
c 
d 
e 
f 
g 

CCCgHg), CH3 CHgCl 

7.18-7.63 

0.38 
0.75 
0.75 
0.74 
0.23 
0.28 
0.76 

2.96 
3.82 
3.82 
3.75 
3.17 
3.18 
3.63 

IV ' a C(CgHg), n-CgH? CHgCl 7.16-7.55 0.67-1.25 3.63 

v' a" C(CH3)20H LcHgOH, CH3] 6CH3 = 1.74 3.83 1.16 J(PCCH3) = 15.2 

VI ' a® C(CH,), CH3 CH3 1.27 0.87 1.25 J(PCCH3) =16.8 

VIII ' a 
b 
c 

OCH3 CH3 CH3 3.80 
3.75 
3.46 

0.91 
0.90 
0.28 

1.26 
1.24 
0.89 

J(P0CH3) = 10.9 

ix' a OCCCHg)] CH3 CH3 1.51 0.88 1.24 

x' 

XI ' 

a^ 

a^ 

OCH3 

0CH3 

H 

0(0X3)3 

CCCH,), 

H 

1.83 

2.10 

1.00 

0.92 

J(HCCH^)+J(HCCHg] 

J(HCCH.) = 4.44 
J(HCCHj) = 11.6 
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XIII' a NCcH _ C,H CHLCl 2.9-3.4, 0.8-1.1, 
^ 1.4-1.7 1.4-1.9 

XIV ' a® NHC(CH^)g CH^ CH^ 0.98 

XVI' a® NH(n-C^Hy) CH^ CH^ [0.32 

XVII' a® N(C2H^)2 CHg CH^ [0.28 

XVIII' a CHg CH^ CHg 1.57 1.06 

b 1.15 0.42 

^When R_ = R, = CH_, the broader resonance is listed under R,. 
5 6 3 6 

^The relative widths of the resonances could not be determined 

^The half widths of the two resonances are very similar. 

^Isomer unknown. 

^Reference 35. 

f 
Reference 98. 

^Reference 39. 

^The relative widths of the resonances were not given (39). 

3.52 

1.16 

0.95]^ 

0.93]^ 

1.09 J(PCHg) = 17.2 

0.67 JCPCHg) = 17.5 

from this spectrum, 

M 
•nJ 
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Table 15 (continued) 

Compound 
and 

Spectrum 
Number R R_ R 

XIX a 
b 
c 
d 
e 
f 
g 
h 
1 

CH„ CH„ CHgBr 

XX a 
b 
c 
d 
e 
f 

CH„ CH„ CHgl 

XXI CH3 CCCH^)] H 

XXII ' a^ CHg 

XXIII ' a C„H 
b ^ ^ 

XXIV ' a n-C^H^ 

H C(CH3)3 

CH3 CHgBr 

CH3 CHgBr 

Chemical Shifts 

a a Coupling 
R_ R, Constants 
5 0 

1 .62  
1.59 
1.70 

1.70 
1.59 
1.07 

1.08 

1.05 
1.54 
1.61 
1.62 
1 .60 
1.59 

1.04 
1.10 
1.06 

0.94 
0.95 
0.30 

0.57 

0.56 
0.94 
1.03 
1.08 
1.09 
1.12 

0.95 

2.05 

0.64 
1.12 

3.63 
3.54 
3.71 

3.80 
3.68 
2.94 

2 .88  

2.53 
3.50 
3.46 
3.42 
3.37 
3.30 

2.15 

0.97 

2 .66  
3.50 

JXPCHg) = 

16.6-17.1 

JXPCHg) = 

16.9-17.2 

J(HCCH.) = 4.74, 
J(HCCHj) =10.1 

J(HCCH ) =5.5, 
J(HCCHj) =10.8 

J(HCCH.) = 4.47, 
J(HCCHj) =10.5 

0.73 2.99 
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b 
c 

XXV ' a n-C„H, CH„ CH„I 
b 

- 3 7 3 2 

XXVI ' a CgHg CHg CH^ 

c 7.32-8.18 
d 7.17-8.00 
e 7.35-8.08 
f 
g 
h 7.37-8.04 
i 7.33-7.97 
j 

XXVII' a® 

XXVIIIV 

XXIX ' a 
b 
c 

xxx' 

XXXI ' a 

XXXII ' a 

XXXIII ' a 

c 
d 

XXXIV ' a 
b 

^^6^5 CH3 CH3 6CH2=3.28 

'2^6"5 CH3 CHgCl 6CH2=3.33 

'2^6"5 C2H5 CHgCl ÔCH =3.27 
6CH,=3.29 
6CH2=2.97 

'2S"5 
CHgCl S»5 6CH2=3.25 

Br H CHgBr 

Br CH3 CHgBr 

Cl CH3 CH3 

H CH3 CH3 5.55 

1.14 3.49 
1.16 3.45 

1.10 3.33 
0.73 2.75 

0.75 0.62 
0.45 0.74 
1.07 1.07 
0.98 1.26 
1.00 1.25 
0.96 1.13 
0.98 1.15 

Co.92 1.16] 
0.97 1.12 
0.99 1.11 

0.95 0.81 J(PCH2)=22.1 

0.85 3.58 J(PCH2)=21.7 

0.53-1.47 3.60 , 
0.55-1.47 3.57 WH,) = 
0.15-0 .97  2 .93  20 .6-21 .2  

0.60-1.48 3.11 J(PCH2)=21.9 

2.1-2.6 3.68 

1.01 3.68 

1.37 1.00 
0.95 1.34 
-0.23 0.58 
-0.053 0.68 
0.37 0.94 J(PH) = 666 
0.98 1.22 
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The configuration of v'is uncertain, even thou^ it was derived from 

P(0CH2)gCCHg, inasmuch as the reaction mechanism is unknown (43). The 

configurations of x', XIXXI' and XXII' have been determined by 

Bentrude and Hargis (98). The molar concentrations were determined by 

comparison of the peak heights of spectra to those for a solution of 

accurately determined concentration. These concentrations may be in 

error by 10 or 20% but are qualitatively useful. 

The methods of analysis of spectra examined by the author are de­

scribed in Section IV.B. The "Analysis" and "Spectrum" columns of 

Table 14 indicate the type of spectrum and the approximation used for 

analysis, respectively. These spectra were obtained over a period of at 

least five years and most of them before an adequate appreciation of the 

important features of AMX, ABX, AA'bb'x and other more complicated 

spectra had been obtained by those who recorded the spectra. For ex­

ample, the methylene resonance was seldom expanded so that more pre­

cise line positions could be obtained. Also, only a few compounds were 

examined at two external magnetic field strengths, partially because the 

second field strength was not available for several years. In addition, 

the 4-methyl resonances were not expanded to determine accurate values 

of Thus, better spectra and more rigorous analyses are possible. 

The magnitude of not included in Table 14, ranges from 10.6 to 

12.1 Hz and averages about 11.2 Hz. Sometimes the ring J(POCH) values 

are close to J(H^Hg) and thus peaks overlap and cause the couplings to 

be less accurately determined. 

Several deceptively simple spectra were encountered. The outer lines 

of the one approximately collapsed AB quartet were not visible in spectra 
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Vlll'a-c, XX'c, XXXIIl' a,b,d and XXXIv'a but were visible in spectra 

XIX e , XXXI'a and XXXIII'c. In all of these spectra the central lines 

of the quartet were not resolved and a determination of 6^, 6^, J(POCH^) 

and J(POCHg) was not considered justifiable. Thus, only + 6^) and 

the sum of J(POCH^) and J(POCHg) are reported. Spectrum XXXIv' b ex­

hibits only two lines for the methylene resonance but the signal to 

noise ratio is too small to justify analysis for individual chemical 

shifts and coupling constants. 

b. Conclusions A very important feature of the spectral results 

is the dependence of the ring J(POCH) for some compounds on temperature, 

solvent or concentration. Dependence on at least one of these condi­

tions has been found for XVIIl', xix', xx', XXl' , XXVl' and XXIX^ . 

Edmunds on (97) has found a temperature dependence for the ring methylene 

resonance of XIX' and the other geometrical isomer and has attributed this 

dependence to conformational mobility; however, he did not report the 

coupling constants or chemical shifts at any temperature. In contrast, 

the triphenyImethy1 derivative III' exhibits less than 2 Hz variation 

in the J(POCH) for seven spectra in different solvents and at different 

temperatures. The variety of conditions for l', XXIIl', XXIV' and XXV' 

is limited but changes of the ring J(POCH) are less than 2 Hz. Condi­

tions were varied for VIIl', XXXIII' and XXXIV^ but deceptively simple 

spectra have always been observed. The other compounds were not ex­

amined at more than one set of conditions. 

A second feature of the results is the general constancy of the sum 

of J(POCH^) and J(POCHg) for the compounds examined under more than one 

set of conditions even when the individual couplings change; the only ex-
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ceptlons are XXI' and XXXIIIAlso, this sum can be used to place all 

of the compounds except XXI' into just four groups, as shown in Table 16. 

Table 16. Sum of ring J(POCH) for l-oxo-l-R-l-phospha-2,6-dioxacyclo-
hexanes 

Group 
No. of Mean 

Compounds Spectra J(POCH^)+J(POCHg) 

Average 
Deviation 

from 
Mean Range 

1 I'-VIl' 14 20.7 0.2 20.0-21.1 

2a VIIl'-XVIl' 12 23.9 0.3 23.4-24.6 

2b XVIII'-XXX' 42^ 23.2 0.4 22.0-24.4 

3 XXXi'-XXXIli' 6 32.1 1.1 30.6-34.0 

4 XXXIV' 2 26.7 0.1 26.6-26.8 

^Spectrum XXI' b excluded. 

The compounds, number of spectra, average sum, average deviation of the 

sums from the average and the range of the sums is given for each group. 

The grouping appears to be a function of R rather than R- and/or R but 
D O 

the diversity of R in groups 2a and b is remarkably great. The division 

into 2a and b was made to separate the electronegative from the electro­

positive R groups and is not justified on the basis of the coupling 

constant sum. Group 1 is characterized by R groups with a secondary or 

tertiary carbon atom bonded to phosphorus. The second group is the 

largest and doesn't appear to be characterized by any particular factor. 

The 1-chloro and 1-bromo derivatives constitute group 3 and the single 1-
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hydro compound XXXIV'falls into a separate grocp 4. A similar grouping can be 

found for the 1-R-l-phospha-2,6-dioxacyclohexanes in Table 12. The 

derivatives with R = OCH^, 0-^ OC^H^, SC^H^ and F have sums 

between 12.8 and 14.0; those with R = CI and Br have sums between 16.2 

and 17.0 and the dimethylamino derivative is unique with a sum of 23.4. 

The exceptions to the similarity between the trivalent and pentavalent 

compounds are the 1-amino compounds, XXXV(P^^^) and XIII' - XVII'(P^). 

The latter fall into main group 2 and thus XXXV would be expected to 

be in the 12.8-14.0 Hz class. In fact, it has a sum very similar to 

tho s e  o f  X I I I X V I I  %  

The spectral results are generally most consistent with the existence 

of chair conformers. The variation of spectral parameters with condi­

tions is thus a consequence of a changing ratio of rapidly intercon-

verting conformers. In conformer 1, shown below in equilibrium with 

conformer 2, the methylene protons labeled A occupy the axial positions 

but they become equatorially disposed in conformer 2. 

Similarly, the equatorial B protons in conformer 1 become axially dis­

posed in conformer 2. If J(POCH^) and J(POCH^ ) are independent of 
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the disposition of the exocyclic substituents at phosphorus and C^, the 

ratio of conformers is x:l and the conformers are interconverting rapidly 

enough to give a weighted time averaged ^ rmr spectrum, then J(POCH^) = 

JCPOCH ) J(POCHg) . ( J(POCH ) + 

J(POCH^). The sum of J(POCH^) and J(POCHg) would always be the 

sum of J(POCH^^) and J(POCH^^), independently of x. If J^(POCH^^) ̂  
ax ax 

J (POCH ), i.e., J(POCH ) is not the same in the two conformers, and 
ax ax 

J^(POCH ) /(POCH ), then J (POCH. ) = ( -^) /(POCH ) + ( -^) 
eq' " eq" ' A x+1 ^ ax x+1 

f (POCH^q) and J(POCHg) = ( /(POCH^^) + (^) /(POCH^). This 

latter possibility would be consistent with a constant sum of J(POCH^) 

and J(POCHg) with changing conformer ratio if [/ (POCH^) - /(POCH^)] = 

[/(POCH ) - /(POCH )]. For example, the set /(POCH ) = 2, 
eq eq ax 

/(POCH^^) = 21, /(POCH^) = 4, /(POCH^^) = 19 cannot be distinguished 

from the set J(POCK^) = 3, J(POCH^^) = 20 if the conformer ratio is 

unknown. An equilibrium between a chair and a boat conformer, such as 

that shown below, is unreasonable but cannot be ruled out. If J(POCH) 

varies with the POCH dihedral angle qualitatively as J(HCCH) varies with 

the HCCH dihedral angle (Section IV.J.1), then the sum of J(POCH^) and 
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J(POCHg) would be expected to depend on the conformer ratio because the 

POCH dihedral angles in the chair are approximately 60°(A) and 180°(B) 

and in the boat are 120° (A and B). Fortuitously, JCPOCH^gg) he 

%[j(POCHgQ) + J(POCH^gQ)]. An equation similar to that for the ob­

served coupling constants can be written for the chemical shifts of . 

and Hj, i.e., 6h^ = ( and ôh^ = ( + 

12 11 
6 H . None of the conformer chemical shifts 5 H , 5 H , 

\k+1 ax ax eq 

2 2 
6 and 6 are expected to be equal. Prediction of the dependence 

of and on the conformer ratio is difficult because of the unknown 

anisotropy of the exocyclic bonds, especially those at phosphorus. The 

chemical shift of a substituent at would be expected to be less de­

pendent than the methylene proton shifts on the substituents at phosphorus 

because of the greater spatial separation of the former from the phosphorus 

substituents. Thus, the chemical shift difference between two 4-methyl 

groups ought to decrease as the conformer ratio approaches unity but it 

probably would not be zero at unity. The spectral results will now be 

discussed in more detail with the purpose of determining if they can be 

reasonably interpreted in terms of chair-chair equilibria. 

The phosphate XI' has been assigned a chair conformation with pre­

dominantly axial methoxyl and equatorial ̂ -butyl groups in CDCl^ (98). 

Since the larger J(HCCH) (Table 15) can be assigned as J(H^CCH^) (see 

footnote 4, p. 141), J^(POCH^^) % J(POCH^) = 1.14 and J^(POCHg^) » 

J(POCHg) = 22.8. The ̂ -butoxylphosphate IX ' has values of J (POCH) about 

4 Hz closer together than those of XI' indicating a larger percentage 

of a second conformer than in a solution of XITwo methylene proton 
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resonances of IX ' in CDCl^ at 60 MHz are shown in Figure 9. These are 

both deceptively simple whereas the resonance at 100 MHz is not. The 

second resonance was obtained by decoupling the protons giving the 

broader 4-methyl resonance. It is evident that the methylene protons 

resonating at low-field are coupled to a 4-methyl group. For reasons 

discussed in Section IV.E.2, both the coupling methylene protons and 

the methyl group are concluded to be predominantly axial. If the second 

resonance is analyzed with the aid of lAOCN 3 (140) as the AA'bb' part 

of an AA'bb'x spectrxim, assuming that the intense line is not split, 

then 6h^ = 3.87, Ôh^ = 4.03, J(POCH^) = + 21.63, J(POCHg) = + 1.94, 

J(H^CCCH^/) =2.67 and the other J(HCCCH) are less than 0.1.^ Since 

the values of J(POCH) are close to those found from analysis of the 

100 MHz spectrum, any splitting of the intense line in Figure 9 is 

probably small. The large four bond coupling suggests that the coupled 

protons are predominantly equatorial. The comparable values of J(POCH) 

for XIl', IX^ and XI^ suggest a similar stereochemistry. Unfortunately, 

the spectra of the other trialkylphosphates, VIII ' and x', are de­

ceptively simple. Bentrude and Hargis concluded from the sum of J(HCCH^) 

and J(HCCHg) that the 4-^-butyl group is equatorial in x' and, conse­

quently, the methoxyl group is equatorial (98). Since the sum is 4.2 Hz 

less than the value of 16.0 for the other isomer XI' (Table 15), an 

equilibrium between two conformer s seems more plausible. If the three 

spectra for VIII ' are analyzed (ABX) assuming the one AB quartet is com­

pletely collapsed, then 21.5, 19.3 and 21.4 Hz are found for J(POCH^), 

^The analysis was performed by Bertrand (99d). The root mean 
square error for thirteen resolved lines was 0.101 Hz with a maximum 
deviation of calculated from observed line of 0.231 Hz. 
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Figure 9. The ring-methylene H nmr resonance of 1-t^-butoxy-
l-oxo-4,4-dimethy1-l-phospha-2,6-dioxacyclohexane 
in CDCl^ 

a. The methylene resonance in the absence of 
decoupling. 
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Figure 9 (continued) 

b. The methylene resonance when the protons giving the broader 
4-methyl resonance are decoupled. The intensity of the 
apparent singlet between the first and third triplets has 
been greatly reduced. 

The spectral amplitudes and sweep widths (Hz/cm) are not 
the same for parts a and b. 
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respectively, and 2.1, 4.7 and 2.0 Hz for J(POCHg), respectively. Since 

the error introduced by the assumption should be no more than a few 

Hertz, the predominance of one conformer for VIII^ is likely. One chair 

conformer with an axially disposed 1-phenoxyl group has been found for 

the phosphate L in the solid (33). This fact and the predominance of 

one conformer for all the phosphates in Table 14, except possibly x', 

also suggest that the axial R-equatorial oxygen stereochemistry at 

phosphorus is preferred. 

Less is known about the amino derivatives XIII ' - XVII' than the 

phosphates, but the J(POCH) values suggest that the conformer ratios for 

X I I I X v '  in CD C l ^  a r e  c l o s e r  t o  u n i t y  t h a n  t h o s e  f o r  X V I '  a n d  X V I I '  

in C-D . The evidence for the formation of an unstable chair conformer 
6 6 

of 1-oxo-1-piperidino-4,4-dimethyl-l-phospha-2,6-dioxacyclohexane 

(LXXVII b), which slowly isomerizes to the more stable chair conformer 

(45), was outlined earlier (pp. 30-1). It is possible to deduce from 

the conclusion that the methoxyl group is axially disposed in the phos­

phite precursor to LXXVII b (see Section IV.E.3) and the Michaelis-

Arbuzov mechanism of the reaction leading to LXXVII b (Equation 10, p. 

31) that the piperidino group is equatorial in LXXVII b and axial in the 

more stable conformer. The fact that ^H nmr resonances of both con-

formers were observed (45) indicates a greater energy barrier to ring 

inversion than for those compounds in Table 14, for example, which ex­

hibit a dependence of spectral parameters on temperature, solvent or 

concentration readily interpretable in teinns of rapidly interconverting 

conformers. 
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The conformational free energy differences for 1-alfcyl, 1-phenyl 

and 1-benzyl derivatives are generally less than for the phosphates. 

A priori. XXII' would be expected to be a model compound existing as a 

chair conformer with equatorial 1-methyl and 4-^-butyl groups. Bentrude 

and Hargis (98) have interpreted the nmr specturm (XXII' a) in terms 

of such a conformer. Thus, the J(POCH) values of 20.2 and 4.1 Hz can 

be considered good approximations to J^(POCH^^) and J^(POCH^); these 

are about 3 Hz smaller and larger, respectively, than those for the 

phosphate XI ' that has been assigned an equatorial rather than an axial 

phosphoryl oxygen. The difference between J(POCH^) and J(POCHg) varies 

from 9.5 to 1.9 for XIX', 16.6 to 1 for XX' and 10.4 to 2.0 for XXVI^ . 

The larger J(POCH) has been arbitrarily labeled A in Table 14. Actually, 

the conformer ratio may be ranging from values much greater than unity 

to values much less than unity. The conformer ratio for the phenyl 

derivative XXVI' shows no concentration dependence in CH^CN in contrast 

to the behavior in benzene. However, the ratio does increase with de­

creased temperature (XXVI'h-j). Thus J(POCH^) - J(POCHg) and 6r^-6r^ 

increase with decreasing temperature while unpredictably, ÔH^-ÔH^ re­

mains practically constant. Unfortunately, it is not possible to con­

clude from these spectra which conformer is dominant. Educated guesses 

of the dominant conformer for other compounds in a few solutions can be 

made, based on the chemical shift of the 4-methyl group. The resonance 

of the broader axial 4-methyl group is at lower field than the more 

narrow equatorial 4-methyl group in l-R-4,4-dimethyl-l-phospha-2,6-

dioxacyclohexanes, VIII' and IXand the pair of isomeric l-methoxy-4-

methyl-4-chloromethyl-l-phospha-2,6-dioxacyclohexanes. In the series of 
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CDCl^ solutions of xx'(c-f), decreases as A J(POCH) in­

creases. Therefore, the conformer with an equatorial 4-tnethyl and, 

consequently, axial l-methyl group becomes more dominant as the con­

centration increases. The same conformer is favored as the concentra­

tion of XIX' is increased or its temperature is decreased in CDCl^. 

The same conclusions result from consideration of the 4-halomethyl 

rather than the 4-methyl chemical shift. Since the changes of chemical 

shift are not very great, the above conclusions cannot be considered very 

certain. An interesting comparison can be made between XVIII' on the 

one hand and XIX' and xx' on the other hand. Spectra of concentrated 

CDClg solutions are available for each and the conformer ratio appears 

to be significantly greater for the 4-methyl-4-halomethyl derivatives than 

for the 4,4-dimethyl derivatives. The conformational preferences of 

the groups at phosphorus appear to be approximately equal under these 

conditions but those of the groups at do not. The axial 4-chloro-

methyl, equatorial 4-methyl stereochemistry was found to be favored by 

a 3-4:1 ratio in an equilibrium mixture of XXXI A and B. If this 

stereochemical preference at applies to XIX ' and XX ' also, then the 

favored conformers have an axial l-methyl group. This is the same con­

clusion tentatively arrived at above for XIX' and XXThe J(POCH) 

values for XXVII ' indicate different conformational preferences for 1-

benzyl and 1-oxo groups. A comparison of the data for XXVII' and 

XXVIIIcoupled with the previously determined axial 4-chloromethyl, 

equatorial 4-methyl preference leads to the conclusion that the preferred 

stereochemistry at phosphorus is axial oxygen, equatorial benzyl, in 

agreement with the finding of Edmundson and Mitchell (36). The J(POCH) 
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values are much farther apart for XXX' than for XXIX' at a comparable 

concentration in CDCl^. This is reasonable because in XXX ' the pre­

ferred conformations at phosphorus and cannot exist simultaneously 

whereas in XXXI' they can. It is unclear why Edmundson (97) found no 

temperature dependence for the spectra of CDCl^solutions of XXVIII' nor the 

other geometrical isomer from -30 to +30°, whereas the spectral par­

ameters of the similar XXIX' in the same solvent are concentration de­

pendent. The 1-methyl derivative XXI' is unusual among the compounds 

of Table 14 that were investigated under more than one set of conditions 

because the sum of J(POCH^) and J(POCHg) increases 5.4 Hz from 35 to 

-54° for a CDCl^ solution. Bentrude and Hargis (98) interpreted the 

relatively large change of J(POCH^), the small change of J(POCHg), the 

small changes of J(HCCH^) and J(HCCHg), and the magnitudes of the 

couplings in terms of a boat conformer in rapid equilibrium with a chair 

with equatorial 4-^-butyland axial 1-methyl groups at 35°. Also, they 

concluded that the two conformers interconvert by flipping of the phos­

phorus end of the molecule and that the chair conformer becomes more 

dominant at -54°. These conclusions are reasonable because a chair 

conformer is expected to have more widely separated values of J(POCH) than 

a boat; however, the sum of J(POCH^) and J(POCHg) at 35° is very similar 

to that for all of the other 1-methyl derivatives in Table 14. If the 

above interpretation is correct and the J(POCH) for the conformers of the 

other 1-methyl derivatives are similar to those for the conformers of 

XXIthen one is led to the improbable conclusion that the ratio of 

chair conformers changes but the ratio of boat to total chair conformers 

does not change with conditions for any of these other derivatives. 
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Compound XXI' should be investigated further. 

The R groups of the compounds of group 1 (l' - VII') are rela­

tively bulky and would be expected to prefer the equatorial position 

at phosphorus. The J(POCH) values for the 4,4-dimethyl derivatives l', 

VI' and VII' are further separated than those of the 4-halomethyl-4-

alkyl derivatives II'- iv' in CDClg. This indicates a greater con-

former ratio for the former than for the latter compounds and is 

reasonable if the axial halomethy1-equatorial alkyl stereochemistry is 

preferred at C^. The J(POCH) values of III' exhibit very little de­

pendence on solvent or temperature and one is tempted to postulate a 

rigid confoinner that is greatly flattened at the phosphorus end of the 

ring relative to a phosphate conformer, for example. However, VI' 

ought to be distorted also, but the J(POCH) values for VI' are greatly 

separated and very different from those for III'. In addition, infrared 

evidence will be presented in Section IV.G.2 for the presence of at 

least two conformer s in solutions of l' and III'. The fact that the sum 

of the J(POCH) values for each of l'- VII' is significantly lower than 

the sums for the other compounds of Table 14 may be due to a slight ad­

ditional flattening of the phosphorus end of the rings of the former 

compounds. 

The spectra of the 1-halo and 1-hydro derivatives XXXI' - XXXIV' re­

quire additional investigation before stereochemical conclusions can be 

drawn. The spectra are usually deceptively simple at 60 MHz but should 

be readily analyzable at 100 MHz. If the five-line spectra (ABX 

approximation) are analyzed assuming a completely collapsed quartet, the 

J(POCH) values are found to differ by 18.4 (XXXI'a), 26.4 (XXXIII'a). 
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26.6 (XXXIIl'b), 30.8 (XXXIIl'c), 31.2 (XXXIIi'd) and 18.6 Hz (XXXIv'a). 

Assumption of a two-line spectrum for XXXIv'b leads to equal couplings of 

13.3 Hz. One chair conformer for XXXII' with axial 4-broincmethyl and 

1-bromo substituents has been found in the solid (32). If one conformer 

also dominates in solution, the more separated pair of J(POCH) values 

30.3 and 3.0, is reasonable. The correct pair can be determined by 

comparison of 60 and 100 MHz spectra. 

2. Infrared spectra 

If two conformers exist for any of the 1-R-1-oxo-l-phospha-2,6-

dioxacyclohexanes, then the phosphoryl stretching band frequencies, v(P=0) 

mi^t be different. Two, rather than one weighted time averaged band 

should appear because the rate of conformer interconversion is expected 

to be much smaller than the difference in vibrational frequencies. A 

summary of v(P=0) assignments for some of these compounds and reference 

compounds is given in Table 17 and their justifications are given below. 

The relative band absorbances were determined without correction for band 

overlaps that often were quite extensive. Also, the ratios of absorbances 

for bands in a particular spectrum are not necessarily conformer ratios 

because the band extinction coefficients are unknown. 

Two methods were used to locate the phosphoryl stretching bands. 

The first is the direct method of comparing the number and positions of 

bands in the 1200 - 1350 cm region, where v(P=0) is expected (73), for 

the trivalent and pentavalent phosphorus analogs. This method was 

applied to VIIl/ LXXVIII and XXVI'. For example, bands found at 1290 

and 1264 cm ^ (CCl^) for XXVI' were not found in the spectrum of XLVI. 
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Table 17. Smmnarv of v(P=0) assignments 

I 
=(̂ 6*5)3 

CCI, 
4 

Keiative uana 

Compound v(P=0) Absorbance 

(CgH^)^CP(OCH^)^ 1249 

0=POCHgC(CH^)^CH^O 1264, 1243 1.0, 2.3 

III' 0=j'OCHgC (CHg)(CH^Cl)CHg6 1264, 1243 1.5, 1.0 

I Ic 
CXIX 0=POCE (CHg ) CH^CH (CH^ ) 0 

CXX 0=j'OCH(CH^)CH^CH(CHg)Ô^ 

(=((=6̂ )3 

CIII 0=P(OCH^)^ 1290, 1274 1.1, 1.0 

VIII' 0=P0CHgC(CH^)^CHgÔ 1310, 1270 8.7, 1.0 

OCH3 

I 1 
LXXVIII 0=POCHgCHgCH20 1312, 1279 5.7, 1.0 

OCH3 

^The P=0 band is generally broader in this solvent. 

^The P=0 band often overlaps other bands. The absorbance is only 
apparent and has not been corrected for band overlaps. 

^The isomer derived from the more stable phosphite isomer XXXII A. 
The 3,5-dimethyl groups are trans to the 2-oxo atom. 

'^The isomer derived from the less stable phosphite isomer XXXII B. 
The 3,5-dimethyl groups are cis to the 2-oxo atom. 

®The band is slightly asymmetric on the low frequency side and 
broad. 
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Vô CDCÏ^ mjZ 
Relative Band Relative Band Relative Band 

v(P=0) Absorbance^ v(P=0) Absorbance^ v(P=0) Absorbance^ 

1250 1240 

1263,1243 1.0, 1.6 1236,1225 1.0,1.2 1256,1240 1.9,6.1 
1220 1.0 

1264,1245 1.6, 1.0 1249,1239 1.1,1.0 

1250 

1259 

1292,1274 1.5,1.0 1275 

1310,1269 11,1.0 1295® 

1310,1276 9.6,1.0 1297,1288 1,1.1 
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Table 17 (continued) 

Compound 

CCI4 

v(P=0) 
Relative Band 

Absorbance 

XXVI' 0=]j'0CH^C(CH^)2CH20 1290,1264 1.0, 3.4 

XX ' 0=P0Ca^C (CHg ) (CHgDCH^t ® 1258 

CH3 

' : —h XXIX 0=P0CH^C (CgH^ ) (CH^CDCH^ 

XXX 0=P0CH2C (CgH^ ) (CH^CDCH^O 

^(=6=5 

^The upper pair of relative absorbances corresponds to a more 
concentrated solution. 

2 *" 1 
There are many bands in the 1200-1350 cm region and these 

assignments are consequently less certain than those for other compounds. 

h -1 
This band is relatively broad and has a shoulder at ca. 1264 cm 

i -1 
There are shoulders at ca. 1291 and 1267 cm . 
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^6^6 CDCÏ^^^ Nujol 

Relative Band Relative Band Relative Band 

v(P=0) Absorbance^ v(P=0) Absorbance^ v(P=0) Absorbance^ 

1288,1262 1.0,1.7f 1272,1260 1.0,1.1 1272,1265 1.0,1.0 
1.0,2.0= 1236 1.2 

1278,1258 1.0,2.5 1269,1240 1.2,1.0 

1290^ 1234 2.5,1.0 1280,1236 2.1,1.0 
1230 1.0 

1280^ 1232 2.2,1.0 1274,1230 1.4,1.0 
1225 1.0 
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The second method is based on the assumption that CDCl^ will deuterium 

bond to the basic phosphoryl oxygen and cause bands due to phosphoryl 

stretching to be at lower frequencies in CDCl^ than in solvents such as 

CCI, or CLH . Several studies support this assumption (92, 93, 152-4). 
4 DO 

Comparison of the results for the triphenylmethy 1 derivatives of 

Table 17 indicates that at least two conformers are present for l' and 

III'. Dimethyl tr iphenylmethyIphosphonate exhibits just one band at­

tributable to v(P=0); in fact, only one band appears in the range 1200-

1350 cm The geometrical isomers, CXIX and CXX, are likely to be con-

formationally pure and to differ in stereochemistry at phosphorus; CXIX 

and CXX should have axial and equatorial phosphoryl linkages, respect-

ively (Section IV.E.3). The difference of 9 cm in v(P=0) for these 

-1 
isomers in C,H, is much less than the 40 cm separation found for 

0 o 

v(S=0) by Lauterbur, et al. (155) for cis- and trans-l-oxo-cis-3,5-

dimethy1-1-thia-2,6-dioxacyclohexane. HeHier, et al. (156) have as­

signed the lower and higher frequency bands for similar sulfites to 

axial and equatorial sulfinyl linkages, respectively. Forman, et al. 

(157) have proposed an interaction of the axial sulfinyl oxygen with 

axial 1,3-hydrogens to account for the preferred axial disposition and 

for the lower frequency for v(S=0^). The decreased difference of axial 

and equatorial v(P=0) compared to v(S=0) may be due to the additional 

flattening of the phosphorus end of the ring for the triphenylmethyl 

derivatives. Conçarison of the CCl^ or C^Hg spectra to the CDCl^ 

spectra of l' and III' leads to the assignment of two bands to phosphoryl 

stretching for each compound. The separation of the two bands is greater 

than that for CXIX and CXX and the solvent shift varies from 6-27 cm 

Three bands appear in a Nujol spectrum of l'. Many organophosphorus 
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compounds exhibit more phosphoryl stretching bands in KBr or Nujol 

than in CCl^ or spectra; the v(p=0) are also generally lower in 

the solid state spectra. The extra bands are usually attributed to 

intermolecular interactions, a reasonable cause for compounds containing 

the highly polar phosphoryl bond. If v(P=0^^) > for l' and 

III', as suggested by the values for CXIX and CXX, and the extinction 

coefficients of the bands for each compound are approximately the same, 

then in CCl^ and C^H^ the conformer with an axial phosphoryl bond is 

dominant for l' and that with an equatorial bond is dominant for III'. 

Conclusions cannot be made for the CDClg solutions due to the broad­

ness of the bands and their extensive overlap. The extinction co-

-1 
efficients may not be the same because the ratio of those of the 1250 cm 

- 1  
band for CXIX and the 1259 cm band of CXX in CS2 is 1.33. A comparison 

of the conclusions drawn from the nmr and infrared spectral results is 

difficult because solutions for the former were much more concentrated 

than those for the latter. Also, conclusions from the infrared results 

must be considered very qualitative because of the uncertainties dis­

cussed above. 

The assignments for the monocyclic trialkyl phosphates suggest that 

one conformer is very dominant. The two bands for trimethyIphosphate 

have been attributed to rotational isomers, which were discussed earlier 

(pp. 37-8). The weak lower frequency band listed for VIII' and LXXVIII 

in CCI, and C,H, may not be due to phosphoryl stretching because a weak 
4 60 

band appears at approximately the same position in spectra of the cor­

responding phosphites. A corresponding band was not observed in the CDCl^ 

spectra. Kainosho, et al. (38) have assigned bands at 1313 (vs) and 
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1272 cm ^(w) to phosphoryl stretching for VIII' in CCl^ because addition 

of phenol caused these bands to shift to 1285 and 1234 cm , respect­

ively. Althougjh phenol is a stronger acid than CDCl^ and consequently 

shifts the v(P=0) further, it exhibits a band in inert solvents at 

about 1180 cm ^ that shifts to higher frequencies in the presence of a 

phosphoryl oxygen (158). The description of the phenol addition was 

-1 
brief and, therefore, it is not possible to determine if the 1234 cm 

is really a shifted phenol band. The fact that the higher frequency band 

-1 -1 
for the seven phosphates studied shifted 25-32 cm from 1308-1322 cm 

-1 -1 
to 1277-1294 cm , but the lower frequency band shifted 37-70 cm from 

1267-1298 cm ̂  to 1227-1234 cm ^ (38), makes this possibility worth 

considering. Nevertheless, the lower-frequency band for VIII^ and 

LXXVIII is relatively weak and, unless and \)(P=0^q) are equal, 

one conformer appears to be very dominant. This is the conclusion drawn 

from the nmr spectrum of IX in CDCl^. The infrared spectrum of 

LXXVIII in CDClg is unusual but reproducible. The doubling of the band 

may be due to different rotational positions of the 1-methoxyl groups, 

but this does not easily explain why the doubling is not observed for 

VIIl'. 

Spectra of the phosphoryl stretching region of the phenyl deriva­

tive XXVI ' in CCl^, CgHg, CDCl^ and Nujol are shown in Figure 10. Two 

conformera are present, probably in different ratios, in CCI, and C 
4 DO 

solutions. The higher frequency band is doubled in CDCl^ in the same 

manner as for LXVIII; therefore, the possibility of a third conformer 

cannot be eliminated. The ̂  nmr spectra indicate that for approximately 
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Figure 10. The infrared phosphoryl stretching region 
of 1-phenyl-1-oxo-4,4-dimethy1-1-phospha-
2j6-dioxacyclohexane in C^H,, CCI., CDCl-
and Nujol ® ° ^ 

The solution concentrations are not equal. 
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0.14 M solutions the conformer ratio is slightly greater in CCl^ than 

in C^H . Also, the conformer ratio appears to decrease with increasing 
6 6 

concentration in C,H,. For all of the compounds investigated at two or 
o o 

more concentrations in CDCl^, the J(POCH) are closer together and the 

conformer ratio is probably closer to unity at the lowest concentration. 

If this is also true for XXVl', then a conformer ratio near unity would 

be expected in the infrared solution. TJie infrared and nmr results 

qualitatively agree in the above respects. In addition, if < 

v(P=0^^), then the conformer with an axial phosphoryl bond is dominant 

in CCI, and C.H at low concentrations. The two strong bands at 1272 
4 5 5 

and 1265 cm ^ in the Nujol spectrum probably correspond to the bands 

at 1272 and 1260 cm ^ in the CDCl^ spectrum. Bands at 1313 and 1212 cm ̂  

in the solution spectra are doubled in the Nujol spectrum. The Nujol 

spectrum compares quite well with the KBr spectrum reported by Siddall 

and Wilhite (85) except that these authors reported only a single very 

-1 
strong band at 1266 cm ; this band, as shown in the article, appears broad 

and asymmetric. 

The v(P=0) assignments for XX' are very tentative because many 

bands appear in 1200-1350 cm region and extensively overlap. No stereo­

chemical conclusions will be drawn. 

Compounds XXIX' and XXX' are geometrical isomers, XXIX' having the 

trans-l-benzyl-4-chloromethyl configuration. The assignment of the lower-

frequency band at approximately 1233 cm ^ as v(P=0) is uncertain be­

cause the CDClg solvent shift is very small and the difference between the 

high- and low-frequency bands is considerably greater than that for other 
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compounds in Table 17. The higher frequency band in the spectrum 

/ / * 1 
of both XXIX and XXX has a shoulder at about 1265 cm and that for 

XXIX' also has a shoulder at 1291 cm The higher-frequency band in 

CDClg is quite broad and only one maximum is observable. Extrapolation 

of the nmr spectral results indicates that two conformers are about 

equally present in dilute and CDCl^ solutions of XXIX^ and that 

the ratio may be greater in a dilute CDCl^ solution of XXXThese re­

sults indicate that the lower v(P=0) assignment is incorrect and that 

perhaps one of the shoulders constitutes the second v(P=0) absorption, 

H. Relationship of Stereochemistry to Dipole 
Moments of l-R-l-Y-l-phospha-2,6-

dioxacyclohexanes 

The dipole moments of a large number of l-Y-l-R-l-phospha-2,6-

dioxacyclohexanes, wherein Y is oxygen, sulfur or are given in 

Table 7. The uncertainties in deducing stereochemistries from dipole 

moments have been discussed in Section IV.A. Some empirical relation­

ships will be established in this Section and an attempt will be made to 

relate them to molecular stereochemistries. 

The molecular dipole moments calculated by a vector summation of bond 

moments indicate generally that a conformer with an axial 1-oxo.1-thio or 

1-borino (BH^) group ought to have a smaller moment than conformers with 

these groups equatorial. The compounds of each of the following pairs of 

isomers are thought to differ in stereochemistry mainly at phosphorus: 

XC - XCI, x'- XICXIX - CXX, XXIXXII ' and CXXVI - CXXV. The stereo­

chemistry at phosphorus in the more stable phosphite isomer XXX À has 

been concluded by Bentrude and Hargis, independently of dipole moment 
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evidence, to be axial methoxyl, equatorial lone-pair (26). It is very 

likely that this stereochemistry is dominant for 30ŒII A and XXVI A 

also. If the mechanisms, discussed earlier, for the formation of the 

above pairs of compounds from the phosphite isomers are correct, then 

the second confound of each pair has a predominantly equatorial Y group 

and the first an axial Y group, in qualitative agreement with the dipole 

moment calculations (Table 7). The differences between the moments of 

each pair are not as great as expected, except for the pair CXXV - CXXVI. 

As discussed previously (Section IV.A.), this is probably partly due to 

incorrect assumptions used to calculate the moments, but may also be due 

to the presence of two conformers for some of the compounds. 

If the above stereochemical arguments are correct, then the stereo­

chemistry of three additional cwnpounds can be predicted. Firstly, 

the phosphate LXXVIII has a moment close to that of XI' and should have 

an equatorial phosphoryl oxygen. This conclusion is significant because 

LXXVIII has no exocyclic group(s) at C^-C^ that might force an unpre-

ferred stereochemistry at phosphorus. Thus, the preferred stereochemistry 

is axial methoxyl, equatorial oxygen, in agreement with the solid state 

structure of L. Secondly, the mcsnent of the triphenyImethy 1 derivative 

l' is smaller than those of CXIX and CXX. This indicates that the phos­

phoryl oxygen is predominantly axial in l', in agreement with the find­

ings of Edmunds on and Mitchell (36). Thirdly, the moment of the thio-

phosphate CXXIV is much closer to that of CXXV than to that of CXXVI. 

The resulting conclusion that the equatorial thiophosphoryl, axial 

methoxyl stereochemistry is dominant in CXXIV has been predicted by 
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Bentrude and Hargls (98). One additional comparison can be made. The 

moment of the borane adduct LXXIX is midway between those of XCI and 

XC. Unfortunately, the 0.39 D difference between the moments of XCI 

and XC makes a stereochemical prediction unjustifiable. 

Prediction of the stereochemistry of compounds possessing a 4-

halomethyl group is difficult because the preferred rotational conforma-

tion(s) of this group are unknown. Also, no compounds that can be 

considered with certainty to have a known stereochemistry, except 

possibly XXXII' (32), are available for comparison purposes as was the 

case above. As a result, no predictions will be made. 

31 
I. P Chemical Shifts of 1-R-1-oxo-l-phospha-2,6-

dioxacyclohexanes 

31 
The P chemical shifts of several 1-R-1-oxo-l-phospha-2,6-dioxa-

cyclohexanes are recorded in Table 18. Most of these have been taken 

from the literature in order to compare tnem to those determined in this 

study. Three empirical relationships are readily apparent. On the one 

hand, the shifts of VIII' and LXXVIII are in the same order as those of 

the trivalent analogs XXXIV and XXIX (Table 13), but the shift differ­

ence for the latter pair is about 7 ppm greater than that for the former 

pair. On the other hand, substitution of a phenoxyl for a methoxyl group 

in VIII' causes a 9 ppm upfield shift similar to the 8 ppm shift result­

ing from the same substitution in the trivalent phosphorus derivative 

XXIX. Lastly, the similarity of the shifts of v' and the 1-g-hydroxy-

cyclohexyl derivative is evidence for the structure proposed for v' by 

Bertrand (43). 
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31 
Table 18. P spectral data of some l-R-l-oxo-l-phospha-2,6-dioxa-

cvclohexanes 

Compound Chemical Shift, ppm 

VIII 

LIX 

LXXVIII 0=POCBLCH„CH-Ô 6.02 =jOCEgCHgCH2( 

OCH^ 

1 

OC^H^ 

OCHg 

1 1 
0=P0CH2CH^CE(CH^)0 

OCHg 

r 

LXXXIV, 0=POC(CH ) CH CH(CH )Ô (14.2, 16)^ 
LXXXV I -3 ^ -3 

a, _a 
0=PœH2CH^CH^0 7, 7.7+1.0 

0=P0CH^C(CH^)gCH^6 7.58, 6.8' 
a 

7.2 + 1.0^ 

0=pÔcH^C(ciy^C^ 126.4,^ 16^ 

LXXXII, 0=POCH CH CH(CH )0 15.1^'^ 

LXXXIII I 

^Reference 143. 

^Upfield from external P^O^ (40); 13.4 ppm upfield from H^PO^. 

^Reference 41. 

^Slightly split (41). 
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Table 18 (continued) 

Compound Chemical Shift, ppm 

LXXXVI, 
LXXXVII 

O^OCH^C (CH^ )2CH(CH(CH2 )2 ) Ô (10.9, 16.5)® 

v'^ 0=P0CH2C (CH^OH) (CH^ )CH2Ô 

COCHg)^^ 

0=POCH2C(CHg)2CH2Ô 

Ç(CH2CH2)2CH2 

-21.5 

-21.1* 

XXXII' 

1 
OH 

O^OCH^C (CH^Br ) (CH^ )CH26 

Br 

14.3 + .1 

® Is orner unknown (43). 

J. Dependencies of J(POCH) and J(POCCH) 

1. Stereochemistry 

A dependence of J(POCH) on the POCH dihedral angle, qualitatively 

similar to that of J(HCCH) on the HCCH dihedral angle (151), was employed 

in earlier discussions and references were given to support this relation­

ship (49, 66, 145). This relationship and the stereochemical dependence 

of J(POCCH) will now be examined in more detail. Coupling constants and 

structures of stsne trivalent and pentavalent phosphorus compounds are 

given in Tables 19 and 20, respectively. Absolute and relative signs of 
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Table 19. Dependence of J(POCH) and J(POCCH) on stereochemistry in some trivalent phosphorus 
cpropounds 

Compound J(PH) 
a 

Reference 

Number of 
Three Bond 

Paths'' 

Number of 
Four Bond 

Paths^ 

CI 

'.PCœn^cHp^ 

+10.0+0.1 159 
+7.9 (H) 160 

-0.55 (H') 

1 
1 
0 

0 
0 
1 

XXXA 

XXXII 

3 

CH 'ax 

'eq 

CH 
ax 

CH 

'eq 
CH 

ax 

11.0 (H^q) 

2.9 (H*,) 

("ax) 2.1 

11.7 (POCH„) 

3.6 

0.5 ("'12) 

25 

31 

1(173) 

1(67) 

1(67) 

1 
0 
0 

0 

0 

0 

0 
2(53,179) 

2(53,61) 
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XXXII B 
CH, \ 

ax 

3.1 + 0.2 (H ) 
10.8 (POC%) 
2.5 + 0.5, 

("ax " eq) 

1(67) 
1 
0 

0 
0 
2 

xcvii (h) 1.6 (H) 
7.2 (h ) 

49 1(120) 
0 3(0,180) 

*Slgns unknown unless explicitly given. 

^Number of three-bond paths from phosphorus to coupled nucleus. The number in parentheses is 
the POCH dihedral angle, 

^Number of four-bond paths from phosphorus to coupled nucleus. The numbers in parentheses are 
the POCC and OCCH dihedral angles, respectively. 

^Albrand, et al. (31) concluded that the 1-methoxyl group is equatorial. The signs of J(P0CH ), 
J(POCCH'gq) and .J(POCCh'^) are the same. 
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Table 19 (continued) 

Number of Number of 
^ Three Bond Four Bond 

Compound J(PH) Reference paths'^ Paths° 

CV 

"endo 

0.29 (H ) 
exo' 

3.83 (H , ) 
15.9 (H 5 

1(120) 

1(120) 
1(180) 

1(60,70) 

1(60,190) 
2(0,170) 

xcii 6.35 (H^q) 116 

ca 0.5 (H'^) 49 

ca 0 (H'gq) 116 

1(180) 

0 

0 

2(60,60) 

2(60,180) 
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Table 20. Dependence of J(POCH) and J(POCCH) on stereochemistry in some pentavalent phosphorus 
compounds 

Compound J(PH) Reference 

Number of 
Three Bond 

Paths'' 

Number of 
Four Bond 

Paths^ 

GUI O'PCOCH^)^ 

0=P(0CH2CH3)3 

11.0 

+8.4 (H), 
+0.84 (H ) 

160 1 
0 

0 
I 

XI 

'ax 

'eq 

ax 

22.8 (h ) 
l.l (H%) 

2.6 (H'eq) 

< K" ax) 

98 

40 

1(173) 
1(67) 

0 
0 

0 
0 

2(53,179) 
2(53, 61) 
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XCIX(H) 6.5(H) 
6.2(H ) 

49 1(120) 
0 3(0 ,180)  

CVII 24 (H5 1(180) 2(0,170) 

XCIV 18.0(H ) 

2.5(H: ) 

2<«ax> 

116 

49 

1(180) 

0 

0 

0 

2(60,60) 

2(60,180) 

^Signs unknown unless explicitly given. 

^Number of three-bond paths from phosphorus to coupled nucleus. The number in parentheses 
is the approximate POCH dihedral angle. 

^Number of four-bond paths from phosphorus to coupled nucleus. The numbers in parentheses 
are the POCC and OCCH dihedral angles, respectively. 
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coupling constants are given if known. Gagnaire, et al. (30) have found 

that the two J(POCH) for XLVI are of the same sign and have concluded 

similarly for the phosphite XXIX because the coupling constants (10.8 

and 2.8 Hz) are similar to those of XLVI (Table 11). Thus, the J(POCH) 

for XXX A in Table 19 probably have the same sign. Similarly, the 

J(PCCK) values for Xl' in Table 20 probably have the same sign because 

those for IX' are similar (21.0 and 3.3 Hz) and the latter do have the 

same sign (see p. 186). Reasons have been given previously for the 

conformational purity of the monocyclic compounds included in Tables 19 

and 20. The value of 2.5 + 0.5 Hz for J(POCCH) for XXXII B was obtained 

31 
from the P spectrum. The resonance is a quartet of quartets. The 

larger quartet splitting is due to J(POCHg) and the small quartet can be 

considered a triplet of doublets due to J(POCH^) and either J(P0CCH'^) 

or J(POCCH'^q). The second J(POCCH') is probably less than 1 Hz, but the 

small signal to noise ratio prevents an accurate evaluation. 

Interpretation of the coupling constants is often difficult because 

more than one bond path exists from phosphorus to the coupled nucleus. 

The number of three- and four-bond paths for each nucleus is given along 

with the J(PH) value in Tables 19 and 20. Also given are the POCH dihed­

ral angles for the three-bond paths and the POCC and OCCH dihedral angles 

for the four-bond paths. The dihedral angles for the monocyclic com­

pounds were calculated from ring dihedral angles for L(33) and assumed 

tetrahedral angles about Cg-C^ and are probably more realistic than 

those calculated from an idealized cyclohexane chair model. The other 

dihedral angles were determined by examination of molecular models 
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based on Pauling covalent radii (with the exception of the 1.57 A° P-0 

bond length) and tetrahedral angles. 

The magnitudes of J(POCH) for trivalent phosphorus are limited to 

dihedral angles of approximately 67, 120, and 180°. The three couplings 

for 67° range from 2.1 - 3.1 Hz. The 120° coupling of 1.6 Hz for 

XCVII(H) is similar, but J(PH^^^) and J(PH^^^^) for CV cannot be compared 

because both three- and four-bond paths contribute. The J(POCH) for 

173 and 180° are 11.0 (XXX A) and 6.35 Hz (XCII), respectively. 

Gagnaire, et al. (30) have reasoned that the different spatial disposi­

tions of the phosphorus lone-pair relative to the coupled nuclei in 

XXIX (J(POCH^q) = 10.8 Hz) and XCII causes the couplings to differ. This 

argument and a comparison of the steric interactions of a methoxyl group 

in axial and equatorial positions led them to assign an equatorial meth­

oxyl group in XXIX. Because the bonding and structures of XXIX and 

XCII are not accurately known, comparison of die coupling constants may 

not be justified. The fact that J(POGH^) in XXXII A and B differ by 

only 1 Hz (provided the signs are the same) indicates that the phosphorus 

lone pair disposition is not very important, at least for a dihedral 

angle of 67°. The arguments given earlier for an axial methoxyl group 

in the more stable phosphite isomer of several isomer pairs seem more 

convincing. The J(Ph') for cv cannot be compared to the J(poch) for 

173 and 180° because two four-bond paths also exist for the former coupl­

ing. 

A useful way to categorize the four-bond J(PH) couplings is in 

terms of the POCC and OCCH dihedral angles. Couplings for three quite 

different pairs of angles are available for trivalent phosphorus. If the 
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contributions to J(POCCH) from equivalent paths are equal and additive, 

then all of the J(POCCH) per path are less than 2.4 Hz. The J(P0CCH'^^) 

for XXXII A is approximately 3.6 Hz larger than that for XCII, although 

the dihedral angles appear to be similar. This difference has been used 

by Albrand, et al. (31) as evidence for an equatorial methoxyl group in 

XXXII A. The argument is that the J(POCCh') for the isomer with an 

axial methoxyl group would be similar to those for XCII because the 

spatial disposition of the phosphorus lone-pair is similar in the two 

compounds. However, one of these couplings is about 2.5 Hz for XXXII B, 

which is believed to have a stereochemistry at phosphorus different than 

that in XXXII A. Thus, neither XXXII A nor B has four-bond couplings 

similar to those of XCII. Unless XXXII B is other than a chair con-

former, the reasoning of Albrand, et al. (31) loses its validity. 

The three J(PH) couplings for the bicyclic phosphite CV are combina­

tions of three and four bond couplings. Prediction of the resultant 

J(Ph') is possible but is probably fortuitous. Thus, J(Ph') is the sum 

of JXPOCH^gg) and two J(POCCH^ the former is given a value of 

11.0 Hz as in XXX A and each of the latter a value of 2,4 (one-third of 

J(POCCH') for XCVII (H)) the sum is 15.8 Hz versus the observed 15.9 Hz. 

The J(POCH^gg) for XCII was not used because it does not give the 

correct sum. Both J(PH ) and J(PH , ) include J(POCH,-«) but different 
exo enao izu 

J(POCCH). If J(POCH^2o) is 1.6 Hz (as in XCVII (H)) and J(POCCH^^) and 

J(POCCH ̂ ^^^) are 0.25 and 1.8 Hz (one-half of J(P0CCH'^) and J(P0CCH'^^), 

respectively, for XXXII A)then the sums are 1.85 for J(PH^^) and 3.4 Hz 

for j(PH^^j^) versus observed values of 0.29 and 3.83 Hz, respectively. 

The relative magnitudes are correct but the magnitude of J(PH^^^) is 



www.manaraa.com

218 

considerably too large. 

The J(POCH) and J(POCCH) values for pentavalent phosphorus can be 

considered in a similar manner. Unfortunately, fewer couplings are 

available. In contrast to the J(POCH) values for trivalent phosphorus, 

couplings for dihedral angles of 67 and 120° are not similar but differ 

by more than 6 Hz. The J(POCH) values for 173 and 180° are 18.0 (XCIV) 

and 22.8 Hz (Xl'), about as widely separated as the corresponding values 

for XXX A and XCII (Table 19). As was found for XXXII A (Table 19), 

J(POCCh'^^) is greater than J(POCCH^) in L. Also, the four-bond 

couplings for XCIV are similar, as they are in the trivalent analog 

XCII. The J(Ph') for CVII can be calculated as the sum of 22.8 Hz, 

from XI', and 4.1 Hz (two-thirds of 6.2 from XCIX (H)) but the agree­

ment with the observed value of 24 Hz is poor. If the J(POCH) value 

from XCIV had been used, the agreement would have been excellent. 

At least two groups of workers have considered J(POCH) couplings 

for an acyclxc PCCH^ group zn terms of ^(POCH^gQ) •" *^trans J^POCH^g) 

= (40, 66). Hall and Malcolm (40) used the coupling constant 

magnitudes for XIl' in the equation for J(average) = ̂  ("^trans^ ̂  "^gauche^ 

and predicted a value of about 9 Hz for the POCH^ group, in good agree­

ment with observed values between 6 and 9. The signs of the couplings 

for XII' were concluded to be the same because of the good agreement. 

Tsuboi, et al. (66) used the J (POCH) value for sodium monomethyl-

phosphate (10.3 Hz) and barium dime thy Iphosphate (10.5 Hz) and the 

"^gauche °^ 1-5 Hz for the 3-hydrogen of the assumed chair form of the 

anion of 1-oxo-1-hydroxy-3-pheny1-l-phospha-2,6-dioxacyclohexane to 

predict a value of 28 Hz for from the equation given above. The 
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equation was derived (66) by assuming the P-0 bond to be trans to one 

C-H bond and gauche to the other two in each of three equally probable 

rotational conformers about the C-0 bond. One such conformer is shown 

below in a Newman projection along the 0-C bond (66). Interconversion of 

these conformers was considered sufficiently rapid that one average 

coupling would be observed. Tsuboi, et al.(66) also interpreted the 

smaller J(POCH) for mono and diethylphosphate anions, 6.3 and 7.0 Hz, 

respectively, in terms of unequally probable rotational conformers. 

Both groups tacitly assumed that the value of J(POCH) is independent of 

the rotational position of the methoxyl group about the P-0 bond. If 

J(POCH) for trimethyl phosphite (+10.0 Hz) and phosphate (11.0 Hz) are 

predicted frrai the above equation for J (average) and J and J ,  ̂ V & ̂  trans gauche 

from XXX A and XIthen values of 5.6 and 8.3 Hz result, respectively, 

if all of the couplings are positive, and values of 1.8 and 6.9 result, 

respectively, if "̂ gĝ jche negative. In neither case is there agree­

ment between predicted and observed values. The reason for the dis­

agreement is unclear. 

2. Phosphorus oxidation state 

The magnitude of J(POCH) increases when phosphorus is oxidized but 

at least one instance has been found of a decrease in J(POCCH) upon oxida­

tion (49). In the paper by Boros, et al. (49), through-bond and through-

h 
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space coupling mechanisms were tentatively proposed to account for this 

decrease from XCVII (H) to XCIX (H). The purpose of this section is to 

compare couplings from the literature to new data. These values appear 

in Tables 19, 20 and 21. The derivatives of a particular iPRR'r'' are 

arranged in Table 21 according to increasing J(POCH) or J(POCCH). The 

order of the derivatives of CV is seen to be the same as for XCVII (CĤ ) 

and XCII. Also, the magnitude of J(POCCH) for the equatorial 3- and/or 

5-methyl group of the monocyclic derivatives depends qualitatively in 

a similar manner on Y. Substitution of methoxyl for triphenyImethy 1 in 

CXX or CXIX causes an increase in J(POCCĤ ). An additional example of 

decreasing J(POCCH) upon oxidation exists in the pair XXXII A and L, if 

substitution of phenoxyl for methoxyl has no effect on the coupling. 

K. Nature of the Phosphoryl Bond of TrialkyIphosphates 

The phosphoryl stretching frequencies (v(P=0)) and phenol shifts 

of acyclic, monocyclic and bicyclic trialkyIphosphates provide informa­

tion about the nature of their phosphoryl linkages. This linkage is 

usually considered to result from the sharing of a pair of 3 sp* hybrid­

ized electrons of phosphorus with oxygen in a c-bond and the sharing of 

two pairs of electrons of oxygen with the 3d orbitals of phosphorus in 

TT-bonds. The extent of donation in both directions determines the strength 

of the bond. The v(P=0) values for compounds of the type 0=PXïZ, wherein 

X, Y, Z can be the same or different, range from 1087 to 1410 cm ̂  (73). 

The primary determinant of v(P=0) appears to be the inductive effects of 

X, Y and Z, as indicated by their electronegativities (73). Thus, an in­

crease in the electronegativities of the substituents causes a with-
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Table 21. Dependence of J(POCH) and J(POCCH) on the oxidation state of 

Compound 
a 

Y:PRR V Y J(POCH) JCPOCCHg) Reference 

XCVIKCĤ ) 

XCVIIICCĤ ) 

:P(OCĤ )̂ CCâ  

BHg 

CĤ  ̂

S 

1.8 

4.2 

5.1 

6 

116 

nft 

161 

145 

XCIXCCHg) 

XCII :P(OCH)̂ (CĤ )̂  

0 7.0 

6.3 

116 

116 

XCIII BH3 12.5 116 

XCV S 19 145 

XCIV 0 20 116 

CV :P(OCH ) CH' 

0 Izl 

15.9 (H') 

CVI 

CVII 

BEj 

0 

20.0 (H') 

24 (%') 

XXXII A :POCH(CĤ )CĤ CH(CĤ )Ô 

OCH3 

< 0.3 

XXXII B < 0.3 

XCI 

XC 

BH3 

BH3 

0.85 + 0.05 

0.95 + 0.05 

;̂PKR'R"is given only for the first compound of a series. Only 
the y substituent changes. 

T̂he phosphorus containing species is a cation. The anion is 
bf^ (161). 
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Table 21 (continued) 

a 
Compound YrPRRV Y J(POCH) J(POCCĤ ) Reference 

CXX :POCH(CĤ )CĤ CHg:̂ 0 0 1.45 + 0.05 

CXIX 0 1.75 + 0.05 

CXXI ̂  :P0CH(CHg)CĤ H((Ciy6 0 2.5 

och^ 

LXXXIII :|0CH(C^ )CHgCH^Ô 0 2.0-2.9^ 

LXXXIV :POC(CĤ )Ĉ CH(CĤ O 0 2.0-2.9 
d 

40 

40 

Îsomer unknown. 

'̂ Coupling to the equatorial methyl group(s). Coupling to the 
axial methyl group in LXXXIV was unresolved (40). 

drawal of electron density from phosphorus that in turn pulls more 

electron density from the oxygen, resulting in a stiffer phosphoryl bond 

and a higher stretching frequency (162, p. 299). Wagner has calculated 

the bond characters of a series of Ŷ PO using an internally consistent 

LCAO-MO method taking into account the Tr-electrons, the varying polarities 

of the YP and OP a-bonds and the changing hybridization of the Tr-bonding 

orbital of the central phosphorus atom. The PO tr-bond orders were found 

to correlate well with the v(P=0), varying from practically zero for 
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(CĤ )PO to almost two for F̂ PO (163). Apparently the CT-bond order re­

mains approximately constant. 

With the above ideas in mind, the v(P=0) and phenol shifts in 

Table 22 can be examined. The v(P=0) values increase in the order 

acyclic < five-membered monocyclic < six-membered monocyclic < 

bicyclic, and the phenol shifts decrease in the order acyclic > six-

membered monocyclic > five-membered monocyclic > bicyclic. Thus, the 

phosphoryl ir-bond order is greatest for the bicyclic phosphates and 

least for the acyclic molecules. The phenol shifts generally confirm 

this conclusion. The phenol shift will be least for the least basic 

phosphoryl oxygen. Increased phosphoryl Ti-bonding will decrease electron 

density on the oxygen and make it less basic. Thus, the bicyclic phos­

phate XCIX has a high v(P=0) and a small phenol shift. Whereas 

tri-n-butyIphosphate is well-known for its good extraction ability of 

metal ions, XCIX has been found to be void of such ability (88). 

Although a decrease in phosphoryl a-bonding from acyclic to bicyclic 

phosphates could also account for the decreased phenol shifts, this 

reason alone would not account for the increase in v(P=0). No attempt 

will be made here to explain the differences in bonding in the phosphates. 

Recent papers should be consulted for pertinent discussions (9, 164, 165). 

L. Relative Stability of Trialkylphosphite Boranes 

TrialkyIphosphites generally form the thermodynamically and hydro-

lytically stable borane adducts Ĥ B:P(OR)g (115, 117, 166). Several 

adducts containing acyclic, monocyclic and bicyclic phosphites were pre­

pared as part of the monocyclic stereochemical studies and in order to 
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Table 22. Phosphorvl oxygen stretching frequencies and phenol shifts for trialkylphosphates 

Compound v(P=0), cm -1 Solvent 

Phenol Shift, 
-1 

cm 

sr 

0=p(qn-c^hg)3 

oepcoc^hg)] 

1260 

(1270,1260)' 

CHCl, 

none 345 

cm 0=p(0ch3)3 (1290,1275)f 
(1282,1273)= 
(1283,1271) 
(1290,1271) 

none 
none 
none 
CCI, 

304+2^ 
315 ° 

II 0=pôc(cïy^c(ch^^ 

OCH„ 

1290^ CHCl, 

VIII 

LXXVIII 

0=P0CH CH 0 

ich3 

0=p0chgchg() 

^2»5 

0=P0CHgC(CH3)2CH20 

ach3 

o=:pôch^cî^ch^ 

OCH„ 

1302 

1302^ 

1301 

(1310,1270) 

(1312,1279) 

j 

j 

ccl^ 

CCI, 

CCI, 

CCI, 

CCI, 

257+2 

270 

280+2 

276+2 



www.manaraa.com

0=P0CHgCH^CH^Ô 1308^ CCl^ 280^ 

^2»5 

XCIX(C.H,,)0=P(0CH,)_CC_H, ® (1336,1320) C.H. 230+5 
^ 2 3 5 11 (1326,1312) cCl: 

CVII 0=P(0CH.)„CH (1355,1346) CH.Cl. 

4 "I 1340" 

T̂he difference in v(O-H) for complexed and uncomplexed phenol in carbon tetrachloride. 

R̂eference 88. 

R̂eference 75. fo 
Ln 

Reference 167. 

V̂alues of v(P=0) in other solvents appear in Table 24. 

f 
Reference 77. 

R̂eference 168. A shoulder on the low frequency side of this band appears in the spectrum 
and may also be assigned as v(P=0), 

R̂eference 169. 

R̂eference 89. 

•̂ The higher frequency band is very much stronger. 

solvent was not mentioned (55). 
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determine whether or not any differences in their thermodyr ajCc. stabili­

ties could be detected. Infrared bands in the B-H stretching region are 

listed in Table 23. Assignments of v(B-H) from the literature for 

several borane adducts are also included. There is substantial disagree­

ment between the values reported by Heitsch and Verkade (170) for CII 

and XCVIII (CŜ ) and those determined in this study. The use of more polar 

solvents by Heitsch and Verkade may account for the difference. As noted 

in Section III.C., the Beckman IR 12 Spectrophotometer was calibrated 

with a polystyrene film. Three bands were found in the 2200-2500 cm 

region for all of the compounds investigated; however, the lowest fre­

quency band was always relatively weak. If the effective symmetry of 

the BĤ  group in the adduct is then one symmetric and one asymnetric 

stretching vibration should be infrared active and two bands should be 

observed. The higher frequency band has been attributed to asymmetric 

B-H stretching (170, 171). The differences in the frequencies of the 

two bands for BĤ  adducts of K(C5̂ )̂ , CO and PF̂  are 53, 58, 55 and 

-1 
70 cm , respectively (170). Since the two higher-frequency bands for 

-1 
the compounds in Table 23 are separated by 40-53 cm and the lowest 

frequency band is separated by at least 140 cm from the highest, the 

two higher frequency bands are attributed to asymmetric and symmetric B-H 

-1 
stretching; the cause of the band in the 2240-2255 cm region is unclear. 

An increased donation of electron density from phosphorus to boron 

should cause the hybridization of the boron valence orbitals to change 

3 2 
towards sp from sp . As a result, the boron orbitals used to bond to 

the hydrogens will have less s-character. Watanabe and Nagasawa (171) 

have found an approximately linear correlation between J(̂ B̂-H) and the 
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Table 23. Bands In v(B-H) region of Infrared for trialkylphosphite boranes 

1 
Bands, 2200-2500 cm" Compound Solvent 

CII HgB:P(OCH^)^ 

CXXII HgB:P0CHgCHg6 

K 
CXXIII H^BzPOCH^CHgCHgO 

ochg 

LXXIX HgB:]|'0CHgC(CH^)^CHg6 

K 
XC HgB:P0CH(CH^)CHgCH(CHg)6̂  

ichj 

XCI H^B:POCH(CH^)CHgCH(CHg)6^ 

icHg 

LXXX H B ;{"OCH C (CH ) (CH C1 )CH^O® 
and J I Z J  ̂ / 
LXXXI OCH^ 

2402( 8 ) ,  2362(w-m), 2255(w), Ĉ Ĥ  

2375, 2260 CĤ Br̂  

2410(s), 2363(m), 2242(w) CCl̂  

2411( 8 ) ,  2364(m), 2245(w) CCl̂  

2409(s), 2360(m), 2243(w) CCl̂  

2410(s), 2358(m), 2242(w) CCl̂  

2398( 8 ) ,  2351(m), 2246(w) CCl̂  

2412(s), 2365(m), 2248(w) CCl̂  
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XCVIIIfCHg) HgB;P(OCHg)̂ CCĤ  

XCIII HgB:P(OCH)̂ (CHg)̂  

cvi h^b:p(0chg)2çh 

2415(s), 2366(m), 2250(w) 

2400, 2355 

2400, 2350 

2433(s), 2380(w-m), 2240(w) 

^6^6 _ b 
CHClg, CHgBrg, 

CĤ CN, Nujol 

"chclg, chgclg* 

CĤ CN, KBr 

C6"6 

The positions of the s(strong) ni(medium) and w(weak) bands are precise to within 1, 2, and 

5 cin"\respectively. 

R̂eference 170. 

D̂erived from the more stable phosphite isomer XXXII A, 

*̂ Derlved from the less stable phosphite isomer XXXII B. 

®A 1:3 mixture of LXXX and LXXXI, derived from XXXI A and B, respectively. 

T̂his band is uncertain due to overlap with a benzene band. 
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weighted root mean square average v(B-H). Such a correlation is reason­

able since both modes are believed to be primarily dependent on the 

amount of s-character in the B-H bond, i.e., both parameters should de­

crease as the s-character decreases. The ̂ B̂Ĥ  proton resonances of many 

of the compounds in Table 23 are very broad and the values of J(̂ B̂-H) 

are consequently uncertain; values of 96.3+ 0.2 for CII and 102 + 2 for 

CVI being the most precise. Values of J(̂ B̂-H) for CII, XCVIII (CĤ ) 

and XCIII have been reported to be 97.2, 96.0 and 97.6 Hz (170). Thus, 

there appears to be no correlation between v(B-H) and J(̂ B̂-H) although 

the small range of the coupling constants and their uncertainties would 

make any correlation questionable. Since the asymmetric v(B-H) are 

known fairly precisely (+ 1 cm ̂ ), some qualitative conclusions about 

the stability of the adducts can be made from a comparison of their values 

in Table 23. Since an increase in the s-character of C-H bonds causes 

an increase in v(C-H), an increase in B-H bond s-character is expected 

to cause an increase in v(B-H). In general, v(B-Ĥ ^̂ )̂ increases in 

the order acyclic < monocyclic < bicyclic phosphites and the conclusion 

is that the acyclic phosphite forms the most thermodynamically stable 

adduct. The low v(B-H) for XCI compared to those of the other monocyclic 

phosphite adducts may well be consonant with the conclusion that it is 

the only adduct possessing an axial BĤ  group. Compound XCIII also 

does not fit the above generalization. 

Heitsch and Verkade have employed displacement reactions of the type 

shown below to conclude that XVCII (CĤ ) is a weaker base than XCII 

towards BĤ  (117, 166). Thus, XCVII (CĤ ) would not displace trimethyla-

12 12 
Base + Base BĤ  , Base BĤ  + Base 
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mine from its adduct but XCII would do so partially in tetrahydro-

furan at room temperature or in the absence of a solvent at elevated 

temperatures over a period of at least 36 hours, the equilibria being 

approached from both directions. Reetz found that tri-isopropylphos-

phite would displace this amine to the extent of 53% in the absence of 

solvent at 50° (115). The following pairs of phosphites and phosphite 

boranes have been equilibrated in benzene: XCVII (CĤ ) - CVI, CV -

XCVIII (CĤ ), XCVII (CĤ ) - CII, CI - XCVIII (CĤ ) and XXIX - CVI. The 

ratios of compounds in each solution were determined by integration of 

nmr resonances. Both XCVII (CŜ ) and XXIX displaced CV from its 

adduct within a few minutes at room temperature. No change in the 

spectrum of CV - XCVIII was observed after six hours. The equilibrium 

constant for the reaction shown below is less than 0.05. Therefore, 

:p(ochg)^cch^ + h^b:p(och^)^ ̂  h3b:p(och2)3cch2 + pcoch^)^ 

XCVII (CĤ ) CII XCVIIICCĤ ) CI 

CI is a stronger base towards BĤ  than XCVII (CĤ ). Thus, the following 

basicity orders can be established; CI > XCVII (CĤ ) > CV and XXIX > 

CV. If triisopropyl and trimethylphosphites have similar basicities and 

the effect of different reaction media on the equilibrium constant is 

negligible or constant, then the following order also holds: CI, XCII > 

XCVII (CĤ ) > CV. The v(B-Ĥ )̂ decrease with increasing stability of 

the adducts as predicted, with the exception of the results for XCIII. 

Admittedly, the number of compounds is limited. Perhaps the most in­

teresting observation in this study is the instability of CVI and the 
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similarity of its value of v(B-H ) to the value of 2434 cm ̂  for the 
asym 

unstable borane carbonyl (170). 

M, Cause of the Doublet Phosphoryl Stretching Band 
for Bicyclic Triall̂ lphosphates 

Comparison of Nujol and hexachlorobutadiene (HCBD) mull infrared 

spectra of XCIX (Ĉ Ĥ )̂ and the corresponding phosphite XCVII (Ĉ Ĥ )̂ 

in the 1250 - 1400 cm region reveals bands at 1310(s) and 1325(sh) 

that are possibly due to phosphoryl stretching. Spectra of XCIX 

in many solvents also contain these two bands. In addition, KBr and 

Nujol/HCBD spectra of other bicyclic phosphates XCIX (R), wherein R is 

H, 2̂̂ 5 Ĉ Ey, exhibit comparable bands. Four possible reasons 

for these two bands will be considered. Firstly, structural isomers, 

perhaps "twistamersmay have different v(P=0) values. Secondly, the 

phosphate molecules may associate with each other, the solvent molecules 

or a solid diluant, e.g., KBr, possibly through the polar phosphoryl 

bond. Thirdly, the second band may be due to another fundamental molecu­

lar vibration. Fourthly, a combination or overtone band may gain in­

tensity as a result of Fermi resonance with the phosphoryl stretching 

vibration. 

The doublet phosphoryl stretching band for the acyclic trimethyl-

phosphate has been attributed to rotational isomers (see pp. 37-8), but 

structural isomers for the bicyclic XCIX (R) are unreasonable. Two 

crystallographically independent molecules of XCIX (CĤ ) per unit cell 

were found by x-ray crystal structure analysis; however, the two mole­

cules were felt to be structurally equivalent (58). 
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Intermolecular interaction in the solid state is often proposed 

to account for "extra" infrared bands, but the x-ray study of XCIX (CĤ ) 

1 
revealed no evidence for such an interaction (58). The H nmr absorp­

tions of XCIX (CHg) and XCIX (Ĉ Ĥ ) in CDCl̂  remain constant upon 

dilution and molecular weight measurements of XCIX (C2Ĥ ) over a range 

of concentrations in Ĉ Ĥ  and CHCl̂  by vapor pressure osmometry indicate 

no association (58). Although cryoscopic measurements in benzene led 

Neunhoeffer and Maiwald (172) to propose dimeric association of XCIX 

(Ĉ Hj.), Verkade and Reynolds found XCIX (CĤ ) to be monomeric in nitro­

benzene by the same method (56). 

Hildbrand (173) has performed a normal coordinate analysis of XCIX 

(CHg) and XCVII (CĤ ) based on their solid state infrared and Raman 

spectra and the known structure of XCIX (CĤ ). Only a band at 1308 cm ̂  

(KBr) was assigned as v(P=0) for XCIX (CĤ ). Other bands also appear 

in the 1300 - 1400 cm ̂  region at 1300 (OCH deformation), 1358 (CĤ  de­

formation) and 1378 (CCĤ  deformation), but a strong band at 1329 cm ̂  

was not assigned and was not included in the analysis. Thus, the source 

of the second band remains unknown. Unfortunately, the KBr spectrum of 

XCVII (CĤ ) exhibits a broad strong band at 1269 cm ̂  (173) that is not 

present in CHCl̂  or CŜ  spectra (170). This band is very likely due to 

a phosphoryl stretching band of a hydrolysis product of XCVII (CĤ ) be­

cause it is relatively much enhanced when a KBr sample of XCVII (CĤ ) 

is reground and repressed. Thus, the normal coordinate analysis of 

XCVII (CĤ ) is highly questionable. 
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Fermi resonance of a combination or overtone band with the phos-

phoryl stretching band is the most likely origin of the second band. 

The sum of the very strong bands for XCIX (CĤ ) at 852 and 462 cm ̂  

(KBr)j attributed to asymmetric P-0 stretching and 0=P-0 deformation, 

respectively, by Hildbrand (173) is 1314 cm . Since both of these 

vibrations have E symmetry (Ĉ  ̂molecular symmetry), Fermi resonance of 

the combination of these fundamental vibrations with the phosphoryl 

stretching vibration is possible. 

The positions and relative percent transmissions of the two bands 

for XCIX (Ĉ Ĥ )̂ in a number of solvents are summarized in Table 24. 

Similar data for trimethyIphosphate (CIII) are included for comparison. 

The most readily apparent difference between the results for XCIX 

(CgĤ )̂ and CIII is the much greater solvent dependence of the peak 

maximum ratio for the former. This behavior for XCIX (Ĉ Ĥ )̂ is 

contrary to \diat would be expected for two fundamental bands, e.g., 

phosphoryl stretching and a deformation band. Fermi resonance cannot be 

ruled out because the solvent dependence of the positions and intensities 

of the vibrational bands contributing to the combination or overtone 

band in Fermi resonance are unknown. 

If the two bands for XCIX and CIII were due primarily to 

phosphoryl stretching, then the absorbance of one band of each pair 

should increase as that of the other decreases, at least qualitatively, 

when the band absorbance ratio changes. The results in Table 25 reveal 

such behavior, especially for CIII. This behavior might also be ex­

pected if Fermi resonance were operative and the intensities of the 

fundamental(s) giving rise to the combination or overtone band in re-
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Table 24. Frequencies and relative intensities of possible phosphoryl 
stretching bands for 1-oxo-4-penty1-2,6,7-trioxa-1-phos-
phabicyclo [2.2.2] octane and trimethylphosphate in various 
solvents 

0=p(och^)^ 0=p(och^)^ccgh^^ 

Peak Max. Peak Max. 

Solvent Frequencieŝ  Av Ratiô  Frequencieŝ  Av̂  Rat iô  

CCI, 
4 

1290, 1271 19 1.0 1326,1312 14 0.45 

CHgCN 1278, 1266 12 1.6 1329,1320 9 0.68 

CHClg 1276® 1332,1319 13 0.95 

CĤ Cl̂  1330,1320 10 1.1 

W 1284, 1271 13 1.6 1330,1320 10 1.4 

(=6̂ 6 1290, 1273 17 1.3 1336,1320 16 2.4 

CgBgBr 1288, 1273 15 1.4 1334,1320 14 3.6 

1288, 1271 17 1.2 1338,1315 23 4.1 

1294, 1277 17 1.1 1340 — — — 

T̂he stronger_̂ and of a pair is sharp. The uncertainty in a band 
position is 3 2 cm 

T̂he difference between the two band frequencies. 

T̂he ratio of percent transmission of the high- to low-frequency band. 
If the peak maximum ratio differs much from unity, the weaker band is 
often a shoulder. Percent transmissions were uncorrected for band over­
laps. 

d 
A vertical scale expansion was employed because the compound 

solubility was slight. 

T̂he band is broader than a single band in other solvents and may 
contain two overlapping bands. 
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Table 25. Relationship of sum and ratio of absorbances of possible phos-
phoryl stretching bands for trimethylphosphate and l-oxo-4-
pentvl-2,6,7-trioxa-l-phosphabicvclo L2.2.2] octane 

0=p(0ceg)^ 0=p(0cb2)^ccgh^^ 

CCI, 
4 cghsbr chgcn 

Concentration, M 0.103 0.103 0.0482 0.0482 

Frequencies 1290,1271 1288,1272 1328,13 20 1335,1322 

Absorbance ratiô  0.91 0.51 2.0 0.23 

Absorbance sum̂  0.47 0.46 0.49 0.75 

Âbsorbances not corrected for band overlap. 

sonance were solvent independent. 

An attempt was made to shift the phosphoryl stretching band(s) of 

XCIX by adding the acids iodine or phenol to a solution to inter­

act with the basic phosphoryl oxygen. The spectral changes were too 

small to allow an interpretation, however, presumably because the basicity 

of XCIX is relatively weak (Section IV. K. ). 

In conclusion, Fermi resonance appears to be the most probable cause 

of the second band of the phosphoryl "doublet" for XCIX (R). Positive 

18 
evidence for this conclusion would be obtained if substitution of 0=P 

for ̂ 0̂=P resulted in a single shifted band and a great loss of intensity 

of the second band. The shift would be approximately in the range 51-

-1 
72 cm , the limits corresponding to the smallest and largest possible 

reduced masses, respectively. 
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V. SUGGESTIONS FOR FUTURE WORK 

Several general research areas worthy of investigation will now be 

considered. Some recommendations of specific experiments were made 

in Chapter IV and will not be repeated here. 

Thermal inversion of the bonds to tricoordinate, trivalent phos­

phorus in 1-alkoxy-l-phospha-2,6-dioxacyclohexanes appears to have a half-

life of many hours at room temperature. The rate of thermal inversion 

should be less than or equal to the rate of isomerization of such 

geometrically isomeric phosphites as XXX - XXXII. The inequality will 

apply if, for instance, an intermolecular alkoxyl exchange similar to 

halide exchange (see Section IV.E.4.) occurs. Since nonequilibrium 

mixtures of phosphite isomers can be prepared, the rate of isomeriza-

tion can be determined from a knowledge of the ratio of isomers as a 

function of time. The isomer ratios can be found by comparison of areas 

of nmr resonances. 

A tentative mechanism for intermolecular halide exchange in 1-halo-l-

phospha-2,6-dioxacyclohexanes has been proposed. Determination of the 

free energy, enthalpy and entropy of activation for compounds differing 

with respect to exocyclic substitution at the carbon atoms of the ring 

should permit further elucidation of the mechanism. Comparison of these 

parameters for 1-chloro and 1-bromo analogs should help to clarify the 

nature of the P-halogen bond. 

Geometrically isomeric 1-R-l-phospha-2,6-dioxacyclohexanes (Table 2) 

undergo a great variety of reactions that do not result in cleavage of 

the six-membered ring. If the configuration of the product(s) and reactant 
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can be determined, the stereochemical course of the reaction can be 

deduced. Conversely, if the mechanism of the reaction and the configura-

tion(s) of either the reactant or product cyclic molecule(s) are known, 

then the unknown configuration(s) can be established. The configura­

tions can be determined by such means as x-ray diffraction and dipole 

moment analysis. If the latter method is employed, the dipole moments 

of both isomers of a product or reactant molecule should be determined 

before the configurations are considered known (see Section IV.H.). 

The chemical shifts of the ring-methylene protons of a large number 

of l-phospha-2,6-dioxacyclohexanes are reported in this Dissertation but 

no stereochemical conclusions are drawn from them. If the anisotropics 

of the bonds and lone-pairs of electrons in these molecules can be de­

termined, then the disposition of exocyclic substituents relative to the 

ring-methylene protons might be established. 

All of the R groups at phosphorus in the 1-R-l-phospha-2,6-dioxa­

cyc lohexanes that have been investigated appear to occupy the axial posi­

tion in a chair conformer unless another exocyclic substituent in the 

molecule has a greater conformational preference that forces the R group 

elsewhere. The stereochemistry of compounds in which R is alkyl or aralkyl 

has not been examined but may provide the first examples of a preferred 

equatorial R, axial phosphorus lone-pair stereochemistry. 

rmrr and infrared data for some 1-R-1-oxo-l-phospha-2,6-dioxacyclo-

hexanes have been interpreted in terms of equilibria of chair conformers, 

but further evidence is desirable. Firstly, examination of a solution of 

one of these compounds at a low temperature may reveal spectra of both 

conformers rather than a weighted time average spectrum. Secondly, analy-
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sis of the ring-methylene proton resonances as the AA.'bb' or Aa'kk' 

parts of AA'bb'x or AA'kk'x spectra or analysis of the satellites 

of these resonances will allow determination of values of J(HCCCH). 

If two chair conformer s are in equilibrium and the conformer ratio ap­

proaches unity, then the difference between j(h^ccch^/) and j(hgccchg/) 

should approach zero. The small magnitudes of these four-bond couplings 

( < 3 Hz) reduce the attractiveness of this approach to studying con-

former equilibria. Thirdly, determination of values of J(POCH) associ­

ated with the ring-methylene protons as a function of temperature should 

permit determination of the couplings for each conformer contributing to 

the equilibrium and the conformer enthalpy differences. The methyl 

phosphonate XIX' (Table 14) exhibits considerable temperature dependence 

of couplings and ought to be investigated further in this respect. 

Trialkylphosphites are not equally basic towards the Lewis acid BĤ  

and a few relative basicities have been established. Further equilibra­

tions of phosphites and phosphite boranes (see Section IV.L.) should be 

carried out and an attempt should be made to correlate the basicities 

with bonding in the phosphites or some other property. Similarly, an 

attempt should be made to relate the differences in phosphoryl bonding in 

trialkylphosphates to the bonding in the rest of the molecule and the 

molecular stereochemistry. 
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